diffusers-sdxl-controlnet
/
tests
/pipelines
/latent_consistency_models
/test_latent_consistency_models.py
import gc | |
import inspect | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
LatentConsistencyModelPipeline, | |
LCMScheduler, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin | |
enable_full_determinism() | |
class LatentConsistencyModelPipelineFastTests( | |
IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase | |
): | |
pipeline_class = LatentConsistencyModelPipeline | |
params = TEXT_TO_IMAGE_PARAMS - {"negative_prompt", "negative_prompt_embeds"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {"negative_prompt"} | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(4, 8), | |
layers_per_block=1, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
norm_num_groups=2, | |
time_cond_proj_dim=32, | |
) | |
scheduler = LCMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[4, 8], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
norm_num_groups=2, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=64, | |
layer_norm_eps=1e-05, | |
num_attention_heads=8, | |
num_hidden_layers=3, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
"image_encoder": None, | |
"requires_safety_checker": False, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
} | |
return inputs | |
def test_ip_adapter_single(self): | |
expected_pipe_slice = None | |
if torch_device == "cpu": | |
expected_pipe_slice = np.array([0.1403, 0.5072, 0.5316, 0.1202, 0.3865, 0.4211, 0.5363, 0.3557, 0.3645]) | |
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) | |
def test_lcm_onestep(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = LatentConsistencyModelPipeline(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["num_inference_steps"] = 1 | |
output = pipe(**inputs) | |
image = output.images | |
assert image.shape == (1, 64, 64, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.1441, 0.5304, 0.5452, 0.1361, 0.4011, 0.4370, 0.5326, 0.3492, 0.3637]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_lcm_multistep(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = LatentConsistencyModelPipeline(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = pipe(**inputs) | |
image = output.images | |
assert image.shape == (1, 64, 64, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.1403, 0.5072, 0.5316, 0.1202, 0.3865, 0.4211, 0.5363, 0.3557, 0.3645]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_lcm_custom_timesteps(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
pipe = LatentConsistencyModelPipeline(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
del inputs["num_inference_steps"] | |
inputs["timesteps"] = [999, 499] | |
output = pipe(**inputs) | |
image = output.images | |
assert image.shape == (1, 64, 64, 3) | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.1403, 0.5072, 0.5316, 0.1202, 0.3865, 0.4211, 0.5363, 0.3557, 0.3645]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=5e-4) | |
# skip because lcm pipeline apply cfg differently | |
def test_callback_cfg(self): | |
pass | |
# override default test because the final latent variable is "denoised" instead of "latents" | |
def test_callback_inputs(self): | |
sig = inspect.signature(self.pipeline_class.__call__) | |
if not ("callback_on_step_end_tensor_inputs" in sig.parameters and "callback_on_step_end" in sig.parameters): | |
return | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
self.assertTrue( | |
hasattr(pipe, "_callback_tensor_inputs"), | |
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs", | |
) | |
def callback_inputs_test(pipe, i, t, callback_kwargs): | |
missing_callback_inputs = set() | |
for v in pipe._callback_tensor_inputs: | |
if v not in callback_kwargs: | |
missing_callback_inputs.add(v) | |
self.assertTrue( | |
len(missing_callback_inputs) == 0, f"Missing callback tensor inputs: {missing_callback_inputs}" | |
) | |
last_i = pipe.num_timesteps - 1 | |
if i == last_i: | |
callback_kwargs["denoised"] = torch.zeros_like(callback_kwargs["denoised"]) | |
return callback_kwargs | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["callback_on_step_end"] = callback_inputs_test | |
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs | |
inputs["output_type"] = "latent" | |
output = pipe(**inputs)[0] | |
assert output.abs().sum() == 0 | |
class LatentConsistencyModelPipelineSlowTests(unittest.TestCase): | |
def setUp(self): | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64)) | |
latents = torch.from_numpy(latents).to(device=device, dtype=dtype) | |
inputs = { | |
"prompt": "a photograph of an astronaut riding a horse", | |
"latents": latents, | |
"generator": generator, | |
"num_inference_steps": 3, | |
"guidance_scale": 7.5, | |
"output_type": "np", | |
} | |
return inputs | |
def test_lcm_onestep(self): | |
pipe = LatentConsistencyModelPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", safety_checker=None) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
inputs["num_inference_steps"] = 1 | |
image = pipe(**inputs).images | |
assert image.shape == (1, 512, 512, 3) | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.1025, 0.0911, 0.0984, 0.0981, 0.0901, 0.0918, 0.1055, 0.0940, 0.0730]) | |
assert np.abs(image_slice - expected_slice).max() < 1e-3 | |
def test_lcm_multistep(self): | |
pipe = LatentConsistencyModelPipeline.from_pretrained("SimianLuo/LCM_Dreamshaper_v7", safety_checker=None) | |
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) | |
pipe = pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_inputs(torch_device) | |
image = pipe(**inputs).images | |
assert image.shape == (1, 512, 512, 3) | |
image_slice = image[0, -3:, -3:, -1].flatten() | |
expected_slice = np.array([0.01855, 0.01855, 0.01489, 0.01392, 0.01782, 0.01465, 0.01831, 0.02539, 0.0]) | |
assert np.abs(image_slice - expected_slice).max() < 1e-3 | |