|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
AutoencoderTiny, |
|
LCMScheduler, |
|
MarigoldDepthPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
require_torch_gpu, |
|
slow, |
|
) |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class MarigoldDepthPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = MarigoldDepthPipeline |
|
params = frozenset(["image"]) |
|
batch_params = frozenset(["image"]) |
|
image_params = frozenset(["image"]) |
|
image_latents_params = frozenset(["latents"]) |
|
callback_cfg_params = frozenset([]) |
|
test_xformers_attention = False |
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"generator", |
|
"output_type", |
|
] |
|
) |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
sample_size=32, |
|
in_channels=8, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
scheduler = LCMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
prediction_type="v_prediction", |
|
set_alpha_to_one=False, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
thresholding=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"prediction_type": "depth", |
|
"scale_invariant": True, |
|
"shift_invariant": True, |
|
} |
|
return components |
|
|
|
def get_dummy_tiny_autoencoder(self): |
|
return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image / 2 + 0.5 |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"image": image, |
|
"num_inference_steps": 1, |
|
"processing_resolution": 0, |
|
"generator": generator, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def _test_marigold_depth( |
|
self, |
|
generator_seed: int = 0, |
|
expected_slice: np.ndarray = None, |
|
atol: float = 1e-4, |
|
**pipe_kwargs, |
|
): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe_inputs = self.get_dummy_inputs(device, seed=generator_seed) |
|
pipe_inputs.update(**pipe_kwargs) |
|
|
|
prediction = pipe(**pipe_inputs).prediction |
|
|
|
prediction_slice = prediction[0, -3:, -3:, -1].flatten() |
|
|
|
if pipe_inputs.get("match_input_resolution", True): |
|
self.assertEqual(prediction.shape, (1, 32, 32, 1), "Unexpected output resolution") |
|
else: |
|
self.assertTrue(prediction.shape[0] == 1 and prediction.shape[3] == 1, "Unexpected output dimensions") |
|
self.assertEqual( |
|
max(prediction.shape[1:3]), |
|
pipe_inputs.get("processing_resolution", 768), |
|
"Unexpected output resolution", |
|
) |
|
|
|
self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) |
|
|
|
def test_marigold_depth_dummy_defaults(self): |
|
self._test_marigold_depth( |
|
expected_slice=np.array([0.4529, 0.5184, 0.4985, 0.4355, 0.4273, 0.4153, 0.5229, 0.4818, 0.4627]), |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P32_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
generator_seed=0, |
|
expected_slice=np.array([0.4529, 0.5184, 0.4985, 0.4355, 0.4273, 0.4153, 0.5229, 0.4818, 0.4627]), |
|
num_inference_steps=1, |
|
processing_resolution=32, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
generator_seed=0, |
|
expected_slice=np.array([0.4511, 0.4531, 0.4542, 0.5024, 0.4987, 0.4969, 0.5281, 0.5215, 0.5182]), |
|
num_inference_steps=1, |
|
processing_resolution=16, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G2024_S1_P32_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
generator_seed=2024, |
|
expected_slice=np.array([0.4671, 0.4739, 0.5130, 0.4308, 0.4411, 0.4720, 0.5064, 0.4796, 0.4795]), |
|
num_inference_steps=1, |
|
processing_resolution=32, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S2_P32_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
generator_seed=0, |
|
expected_slice=np.array([0.4165, 0.4485, 0.4647, 0.4003, 0.4577, 0.5074, 0.5106, 0.5077, 0.5042]), |
|
num_inference_steps=2, |
|
processing_resolution=32, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P64_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
generator_seed=0, |
|
expected_slice=np.array([0.4817, 0.5425, 0.5146, 0.5367, 0.5034, 0.4743, 0.4395, 0.4734, 0.4399]), |
|
num_inference_steps=1, |
|
processing_resolution=64, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P32_E3_B1_M1(self): |
|
self._test_marigold_depth( |
|
generator_seed=0, |
|
expected_slice=np.array([0.3260, 0.3591, 0.2837, 0.2971, 0.2750, 0.2426, 0.4200, 0.3588, 0.3254]), |
|
num_inference_steps=1, |
|
processing_resolution=32, |
|
ensemble_size=3, |
|
ensembling_kwargs={"reduction": "mean"}, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P32_E4_B2_M1(self): |
|
self._test_marigold_depth( |
|
generator_seed=0, |
|
expected_slice=np.array([0.3180, 0.4194, 0.3013, 0.2902, 0.3245, 0.2897, 0.4718, 0.4174, 0.3705]), |
|
num_inference_steps=1, |
|
processing_resolution=32, |
|
ensemble_size=4, |
|
ensembling_kwargs={"reduction": "mean"}, |
|
batch_size=2, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M0(self): |
|
self._test_marigold_depth( |
|
generator_seed=0, |
|
expected_slice=np.array([0.5515, 0.4588, 0.4197, 0.4741, 0.4229, 0.4328, 0.5333, 0.5314, 0.5182]), |
|
num_inference_steps=1, |
|
processing_resolution=16, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=False, |
|
) |
|
|
|
def test_marigold_depth_dummy_no_num_inference_steps(self): |
|
with self.assertRaises(ValueError) as e: |
|
self._test_marigold_depth( |
|
num_inference_steps=None, |
|
expected_slice=np.array([0.0]), |
|
) |
|
self.assertIn("num_inference_steps", str(e)) |
|
|
|
def test_marigold_depth_dummy_no_processing_resolution(self): |
|
with self.assertRaises(ValueError) as e: |
|
self._test_marigold_depth( |
|
processing_resolution=None, |
|
expected_slice=np.array([0.0]), |
|
) |
|
self.assertIn("processing_resolution", str(e)) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class MarigoldDepthPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def _test_marigold_depth( |
|
self, |
|
is_fp16: bool = True, |
|
device: str = "cuda", |
|
generator_seed: int = 0, |
|
expected_slice: np.ndarray = None, |
|
model_id: str = "prs-eth/marigold-lcm-v1-0", |
|
image_url: str = "https://marigoldmonodepth.github.io/images/einstein.jpg", |
|
atol: float = 1e-4, |
|
**pipe_kwargs, |
|
): |
|
from_pretrained_kwargs = {} |
|
if is_fp16: |
|
from_pretrained_kwargs["variant"] = "fp16" |
|
from_pretrained_kwargs["torch_dtype"] = torch.float16 |
|
|
|
pipe = MarigoldDepthPipeline.from_pretrained(model_id, **from_pretrained_kwargs) |
|
if device == "cuda": |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device=device).manual_seed(generator_seed) |
|
|
|
image = load_image(image_url) |
|
width, height = image.size |
|
|
|
prediction = pipe(image, generator=generator, **pipe_kwargs).prediction |
|
|
|
prediction_slice = prediction[0, -3:, -3:, -1].flatten() |
|
|
|
if pipe_kwargs.get("match_input_resolution", True): |
|
self.assertEqual(prediction.shape, (1, height, width, 1), "Unexpected output resolution") |
|
else: |
|
self.assertTrue(prediction.shape[0] == 1 and prediction.shape[3] == 1, "Unexpected output dimensions") |
|
self.assertEqual( |
|
max(prediction.shape[1:3]), |
|
pipe_kwargs.get("processing_resolution", 768), |
|
"Unexpected output resolution", |
|
) |
|
|
|
self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) |
|
|
|
def test_marigold_depth_einstein_f32_cpu_G0_S1_P32_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
is_fp16=False, |
|
device="cpu", |
|
generator_seed=0, |
|
expected_slice=np.array([0.4323, 0.4323, 0.4323, 0.4323, 0.4323, 0.4323, 0.4323, 0.4323, 0.4323]), |
|
num_inference_steps=1, |
|
processing_resolution=32, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_einstein_f32_cuda_G0_S1_P768_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
is_fp16=False, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.1244, 0.1265, 0.1292, 0.1240, 0.1252, 0.1266, 0.1246, 0.1226, 0.1180]), |
|
num_inference_steps=1, |
|
processing_resolution=768, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_einstein_f16_cuda_G0_S1_P768_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.1241, 0.1262, 0.1290, 0.1238, 0.1250, 0.1265, 0.1244, 0.1225, 0.1179]), |
|
num_inference_steps=1, |
|
processing_resolution=768, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_einstein_f16_cuda_G2024_S1_P768_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=2024, |
|
expected_slice=np.array([0.1710, 0.1725, 0.1738, 0.1700, 0.1700, 0.1696, 0.1698, 0.1663, 0.1592]), |
|
num_inference_steps=1, |
|
processing_resolution=768, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_einstein_f16_cuda_G0_S2_P768_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.1085, 0.1098, 0.1110, 0.1081, 0.1085, 0.1082, 0.1085, 0.1057, 0.0996]), |
|
num_inference_steps=2, |
|
processing_resolution=768, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_einstein_f16_cuda_G0_S1_P512_E1_B1_M1(self): |
|
self._test_marigold_depth( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.2683, 0.2693, 0.2698, 0.2666, 0.2632, 0.2615, 0.2656, 0.2603, 0.2573]), |
|
num_inference_steps=1, |
|
processing_resolution=512, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_einstein_f16_cuda_G0_S1_P768_E3_B1_M1(self): |
|
self._test_marigold_depth( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.1200, 0.1215, 0.1237, 0.1193, 0.1197, 0.1202, 0.1196, 0.1166, 0.1109]), |
|
num_inference_steps=1, |
|
processing_resolution=768, |
|
ensemble_size=3, |
|
ensembling_kwargs={"reduction": "mean"}, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_einstein_f16_cuda_G0_S1_P768_E4_B2_M1(self): |
|
self._test_marigold_depth( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.1121, 0.1135, 0.1155, 0.1111, 0.1115, 0.1118, 0.1111, 0.1079, 0.1019]), |
|
num_inference_steps=1, |
|
processing_resolution=768, |
|
ensemble_size=4, |
|
ensembling_kwargs={"reduction": "mean"}, |
|
batch_size=2, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_einstein_f16_cuda_G0_S1_P512_E1_B1_M0(self): |
|
self._test_marigold_depth( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.2671, 0.2690, 0.2720, 0.2659, 0.2676, 0.2739, 0.2664, 0.2686, 0.2573]), |
|
num_inference_steps=1, |
|
processing_resolution=512, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=False, |
|
) |
|
|