|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
AutoencoderTiny, |
|
LCMScheduler, |
|
MarigoldNormalsPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
require_torch_gpu, |
|
slow, |
|
) |
|
|
|
from ..test_pipelines_common import PipelineTesterMixin |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class MarigoldNormalsPipelineFastTests(PipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = MarigoldNormalsPipeline |
|
params = frozenset(["image"]) |
|
batch_params = frozenset(["image"]) |
|
image_params = frozenset(["image"]) |
|
image_latents_params = frozenset(["latents"]) |
|
callback_cfg_params = frozenset([]) |
|
test_xformers_attention = False |
|
required_optional_params = frozenset( |
|
[ |
|
"num_inference_steps", |
|
"generator", |
|
"output_type", |
|
] |
|
) |
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None): |
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
block_out_channels=(32, 64), |
|
layers_per_block=2, |
|
time_cond_proj_dim=time_cond_proj_dim, |
|
sample_size=32, |
|
in_channels=8, |
|
out_channels=4, |
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), |
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), |
|
cross_attention_dim=32, |
|
) |
|
torch.manual_seed(0) |
|
scheduler = LCMScheduler( |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
prediction_type="v_prediction", |
|
set_alpha_to_one=False, |
|
steps_offset=1, |
|
beta_schedule="scaled_linear", |
|
clip_sample=False, |
|
thresholding=False, |
|
) |
|
torch.manual_seed(0) |
|
vae = AutoencoderKL( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=4, |
|
) |
|
torch.manual_seed(0) |
|
text_encoder_config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
text_encoder = CLIPTextModel(text_encoder_config) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
components = { |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
"text_encoder": text_encoder, |
|
"tokenizer": tokenizer, |
|
"prediction_type": "normals", |
|
"use_full_z_range": True, |
|
} |
|
return components |
|
|
|
def get_dummy_tiny_autoencoder(self): |
|
return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
image = image / 2 + 0.5 |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"image": image, |
|
"num_inference_steps": 1, |
|
"processing_resolution": 0, |
|
"generator": generator, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
def _test_marigold_normals( |
|
self, |
|
generator_seed: int = 0, |
|
expected_slice: np.ndarray = None, |
|
atol: float = 1e-4, |
|
**pipe_kwargs, |
|
): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
|
|
pipe = self.pipeline_class(**components) |
|
pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
pipe_inputs = self.get_dummy_inputs(device, seed=generator_seed) |
|
pipe_inputs.update(**pipe_kwargs) |
|
|
|
prediction = pipe(**pipe_inputs).prediction |
|
|
|
prediction_slice = prediction[0, -3:, -3:, -1].flatten() |
|
|
|
if pipe_inputs.get("match_input_resolution", True): |
|
self.assertEqual(prediction.shape, (1, 32, 32, 3), "Unexpected output resolution") |
|
else: |
|
self.assertTrue(prediction.shape[0] == 1 and prediction.shape[3] == 3, "Unexpected output dimensions") |
|
self.assertEqual( |
|
max(prediction.shape[1:3]), |
|
pipe_inputs.get("processing_resolution", 768), |
|
"Unexpected output resolution", |
|
) |
|
|
|
self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) |
|
|
|
def test_marigold_depth_dummy_defaults(self): |
|
self._test_marigold_normals( |
|
expected_slice=np.array([0.0967, 0.5234, 0.1448, -0.3155, -0.2550, -0.5578, 0.6854, 0.5657, -0.1263]), |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P32_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
generator_seed=0, |
|
expected_slice=np.array([0.0967, 0.5234, 0.1448, -0.3155, -0.2550, -0.5578, 0.6854, 0.5657, -0.1263]), |
|
num_inference_steps=1, |
|
processing_resolution=32, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
generator_seed=0, |
|
expected_slice=np.array([-0.4128, -0.5918, -0.6540, 0.2446, -0.2687, -0.4607, 0.2935, -0.0483, -0.2086]), |
|
num_inference_steps=1, |
|
processing_resolution=16, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G2024_S1_P32_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
generator_seed=2024, |
|
expected_slice=np.array([0.5731, -0.7631, -0.0199, 0.1609, -0.4628, -0.7044, 0.5761, -0.3471, -0.4498]), |
|
num_inference_steps=1, |
|
processing_resolution=32, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S2_P32_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
generator_seed=0, |
|
expected_slice=np.array([0.1017, -0.6823, -0.2533, 0.1988, 0.3389, 0.8478, 0.7757, 0.5220, 0.8668]), |
|
num_inference_steps=2, |
|
processing_resolution=32, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P64_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
generator_seed=0, |
|
expected_slice=np.array([-0.2391, 0.7969, 0.6224, 0.0698, 0.5669, -0.2167, -0.1362, -0.8945, -0.5501]), |
|
num_inference_steps=1, |
|
processing_resolution=64, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P32_E3_B1_M1(self): |
|
self._test_marigold_normals( |
|
generator_seed=0, |
|
expected_slice=np.array([0.3826, -0.9634, -0.3835, 0.3514, 0.0691, -0.6182, 0.8709, 0.1590, -0.2181]), |
|
num_inference_steps=1, |
|
processing_resolution=32, |
|
ensemble_size=3, |
|
ensembling_kwargs={"reduction": "mean"}, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P32_E4_B2_M1(self): |
|
self._test_marigold_normals( |
|
generator_seed=0, |
|
expected_slice=np.array([0.2500, -0.3928, -0.2415, 0.1133, 0.2357, -0.4223, 0.9967, 0.4859, -0.1282]), |
|
num_inference_steps=1, |
|
processing_resolution=32, |
|
ensemble_size=4, |
|
ensembling_kwargs={"reduction": "mean"}, |
|
batch_size=2, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_depth_dummy_G0_S1_P16_E1_B1_M0(self): |
|
self._test_marigold_normals( |
|
generator_seed=0, |
|
expected_slice=np.array([0.9588, 0.3326, -0.0825, -0.0994, -0.3534, -0.4302, 0.3562, 0.4421, -0.2086]), |
|
num_inference_steps=1, |
|
processing_resolution=16, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=False, |
|
) |
|
|
|
def test_marigold_depth_dummy_no_num_inference_steps(self): |
|
with self.assertRaises(ValueError) as e: |
|
self._test_marigold_normals( |
|
num_inference_steps=None, |
|
expected_slice=np.array([0.0]), |
|
) |
|
self.assertIn("num_inference_steps", str(e)) |
|
|
|
def test_marigold_depth_dummy_no_processing_resolution(self): |
|
with self.assertRaises(ValueError) as e: |
|
self._test_marigold_normals( |
|
processing_resolution=None, |
|
expected_slice=np.array([0.0]), |
|
) |
|
self.assertIn("processing_resolution", str(e)) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class MarigoldNormalsPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def _test_marigold_normals( |
|
self, |
|
is_fp16: bool = True, |
|
device: str = "cuda", |
|
generator_seed: int = 0, |
|
expected_slice: np.ndarray = None, |
|
model_id: str = "prs-eth/marigold-normals-lcm-v0-1", |
|
image_url: str = "https://marigoldmonodepth.github.io/images/einstein.jpg", |
|
atol: float = 1e-4, |
|
**pipe_kwargs, |
|
): |
|
from_pretrained_kwargs = {} |
|
if is_fp16: |
|
from_pretrained_kwargs["variant"] = "fp16" |
|
from_pretrained_kwargs["torch_dtype"] = torch.float16 |
|
|
|
pipe = MarigoldNormalsPipeline.from_pretrained(model_id, **from_pretrained_kwargs) |
|
if device == "cuda": |
|
pipe.enable_model_cpu_offload() |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
generator = torch.Generator(device=device).manual_seed(generator_seed) |
|
|
|
image = load_image(image_url) |
|
width, height = image.size |
|
|
|
prediction = pipe(image, generator=generator, **pipe_kwargs).prediction |
|
|
|
prediction_slice = prediction[0, -3:, -3:, -1].flatten() |
|
|
|
if pipe_kwargs.get("match_input_resolution", True): |
|
self.assertEqual(prediction.shape, (1, height, width, 3), "Unexpected output resolution") |
|
else: |
|
self.assertTrue(prediction.shape[0] == 1 and prediction.shape[3] == 3, "Unexpected output dimensions") |
|
self.assertEqual( |
|
max(prediction.shape[1:3]), |
|
pipe_kwargs.get("processing_resolution", 768), |
|
"Unexpected output resolution", |
|
) |
|
|
|
self.assertTrue(np.allclose(prediction_slice, expected_slice, atol=atol)) |
|
|
|
def test_marigold_normals_einstein_f32_cpu_G0_S1_P32_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
is_fp16=False, |
|
device="cpu", |
|
generator_seed=0, |
|
expected_slice=np.array([0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971, 0.8971]), |
|
num_inference_steps=1, |
|
processing_resolution=32, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_normals_einstein_f32_cuda_G0_S1_P768_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
is_fp16=False, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.7980, 0.7952, 0.7914, 0.7931, 0.7871, 0.7816, 0.7844, 0.7710, 0.7601]), |
|
num_inference_steps=1, |
|
processing_resolution=768, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_normals_einstein_f16_cuda_G0_S1_P768_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.7979, 0.7949, 0.7915, 0.7930, 0.7871, 0.7817, 0.7842, 0.7710, 0.7603]), |
|
num_inference_steps=1, |
|
processing_resolution=768, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_normals_einstein_f16_cuda_G2024_S1_P768_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=2024, |
|
expected_slice=np.array([0.8428, 0.8428, 0.8433, 0.8369, 0.8325, 0.8315, 0.8271, 0.8135, 0.8057]), |
|
num_inference_steps=1, |
|
processing_resolution=768, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_normals_einstein_f16_cuda_G0_S2_P768_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.7095, 0.7095, 0.7104, 0.7070, 0.7051, 0.7061, 0.7017, 0.6938, 0.6914]), |
|
num_inference_steps=2, |
|
processing_resolution=768, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_normals_einstein_f16_cuda_G0_S1_P512_E1_B1_M1(self): |
|
self._test_marigold_normals( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.7168, 0.7163, 0.7163, 0.7080, 0.7061, 0.7046, 0.7031, 0.7007, 0.6987]), |
|
num_inference_steps=1, |
|
processing_resolution=512, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_normals_einstein_f16_cuda_G0_S1_P768_E3_B1_M1(self): |
|
self._test_marigold_normals( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.7114, 0.7124, 0.7144, 0.7085, 0.7070, 0.7080, 0.7051, 0.6958, 0.6924]), |
|
num_inference_steps=1, |
|
processing_resolution=768, |
|
ensemble_size=3, |
|
ensembling_kwargs={"reduction": "mean"}, |
|
batch_size=1, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_normals_einstein_f16_cuda_G0_S1_P768_E4_B2_M1(self): |
|
self._test_marigold_normals( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.7412, 0.7441, 0.7490, 0.7383, 0.7388, 0.7437, 0.7329, 0.7271, 0.7300]), |
|
num_inference_steps=1, |
|
processing_resolution=768, |
|
ensemble_size=4, |
|
ensembling_kwargs={"reduction": "mean"}, |
|
batch_size=2, |
|
match_input_resolution=True, |
|
) |
|
|
|
def test_marigold_normals_einstein_f16_cuda_G0_S1_P512_E1_B1_M0(self): |
|
self._test_marigold_normals( |
|
is_fp16=True, |
|
device="cuda", |
|
generator_seed=0, |
|
expected_slice=np.array([0.7188, 0.7144, 0.7134, 0.7178, 0.7207, 0.7222, 0.7231, 0.7041, 0.6987]), |
|
num_inference_steps=1, |
|
processing_resolution=512, |
|
ensemble_size=1, |
|
batch_size=1, |
|
match_input_resolution=False, |
|
) |
|
|