svjack's picture
Upload 1392 files
43b7e92 verified
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImg2ImgPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils.testing_utils import (
floats_tensor,
load_image,
load_numpy,
nightly,
require_torch_gpu,
torch_device,
)
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class ShapEImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
pipeline_class = ShapEImg2ImgPipeline
params = ["image"]
batch_params = ["image"]
required_optional_params = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
test_xformers_attention = False
@property
def text_embedder_hidden_size(self):
return 16
@property
def time_input_dim(self):
return 16
@property
def time_embed_dim(self):
return self.time_input_dim * 4
@property
def renderer_dim(self):
return 8
@property
def dummy_image_encoder(self):
torch.manual_seed(0)
config = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size,
image_size=32,
projection_dim=self.text_embedder_hidden_size,
intermediate_size=24,
num_attention_heads=2,
num_channels=3,
num_hidden_layers=5,
patch_size=1,
)
model = CLIPVisionModel(config)
return model
@property
def dummy_image_processor(self):
image_processor = CLIPImageProcessor(
crop_size=224,
do_center_crop=True,
do_normalize=True,
do_resize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
resample=3,
size=224,
)
return image_processor
@property
def dummy_prior(self):
torch.manual_seed(0)
model_kwargs = {
"num_attention_heads": 2,
"attention_head_dim": 16,
"embedding_dim": self.time_input_dim,
"num_embeddings": 32,
"embedding_proj_dim": self.text_embedder_hidden_size,
"time_embed_dim": self.time_embed_dim,
"num_layers": 1,
"clip_embed_dim": self.time_input_dim * 2,
"additional_embeddings": 0,
"time_embed_act_fn": "gelu",
"norm_in_type": "layer",
"embedding_proj_norm_type": "layer",
"encoder_hid_proj_type": None,
"added_emb_type": None,
}
model = PriorTransformer(**model_kwargs)
return model
@property
def dummy_renderer(self):
torch.manual_seed(0)
model_kwargs = {
"param_shapes": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"d_latent": self.time_input_dim,
"d_hidden": self.renderer_dim,
"n_output": 12,
"background": (
0.1,
0.1,
0.1,
),
}
model = ShapERenderer(**model_kwargs)
return model
def get_dummy_components(self):
prior = self.dummy_prior
image_encoder = self.dummy_image_encoder
image_processor = self.dummy_image_processor
shap_e_renderer = self.dummy_renderer
scheduler = HeunDiscreteScheduler(
beta_schedule="exp",
num_train_timesteps=1024,
prediction_type="sample",
use_karras_sigmas=True,
clip_sample=True,
clip_sample_range=1.0,
)
components = {
"prior": prior,
"image_encoder": image_encoder,
"image_processor": image_processor,
"shap_e_renderer": shap_e_renderer,
"scheduler": scheduler,
}
return components
def get_dummy_inputs(self, device, seed=0):
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"image": input_image,
"generator": generator,
"num_inference_steps": 1,
"frame_size": 32,
"output_type": "latent",
}
return inputs
def test_shap_e(self):
device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
output = pipe(**self.get_dummy_inputs(device))
image = output.images[0]
image_slice = image[-3:, -3:].cpu().numpy()
assert image.shape == (32, 16)
expected_slice = np.array(
[-1.0, 0.40668195, 0.57322013, -0.9469888, 0.4283227, 0.30348337, -0.81094897, 0.74555075, 0.15342723]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_inference_batch_consistent(self):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[2])
def test_inference_batch_single_identical(self):
self._test_inference_batch_single_identical(
batch_size=2,
expected_max_diff=6e-3,
)
def test_num_images_per_prompt(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
batch_size = 1
num_images_per_prompt = 2
inputs = self.get_dummy_inputs(torch_device)
for key in inputs.keys():
if key in self.batch_params:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
def test_float16_inference(self):
super().test_float16_inference(expected_max_diff=1e-1)
def test_save_load_local(self):
super().test_save_load_local(expected_max_difference=5e-3)
@unittest.skip("Key error is raised with accelerate")
def test_sequential_cpu_offload_forward_pass(self):
pass
@nightly
@require_torch_gpu
class ShapEImg2ImgPipelineIntegrationTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_shap_e_img2img(self):
input_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/shap_e/test_shap_e_img2img_out.npy"
)
pipe = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img")
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
images = pipe(
input_image,
generator=generator,
guidance_scale=3.0,
num_inference_steps=64,
frame_size=64,
output_type="np",
).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(images, expected_image)