diffusers-sdxl-controlnet / tests /pipelines /stable_diffusion /test_onnx_stable_diffusion_upscale.py
svjack's picture
Upload 1392 files
43b7e92 verified
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import unittest
import numpy as np
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils.testing_utils import (
floats_tensor,
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class OnnxStableDiffusionUpscalePipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase):
# TODO: is there an appropriate internal test set?
hub_checkpoint = "ssube/stable-diffusion-x4-upscaler-onnx"
def get_dummy_inputs(self, seed=0):
image = floats_tensor((1, 3, 128, 128), rng=random.Random(seed))
generator = np.random.RandomState(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "np",
}
return inputs
def test_pipeline_default_ddpm(self):
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.6957, 0.7002, 0.7186, 0.6881, 0.6693, 0.6910, 0.7445, 0.7274, 0.7056])
assert np.abs(image_slice - expected_slice).max() < 1e-1
def test_pipeline_pndm(self):
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array([0.7349, 0.7347, 0.7034, 0.7696, 0.7876, 0.7597, 0.7916, 0.8085, 0.8036])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_dpm_multistep(self):
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_euler(self):
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
def test_pipeline_euler_ancestral(self):
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider")
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs()
image = pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043]
)
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
@nightly
@require_onnxruntime
@require_torch_gpu
class OnnxStableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
@property
def gpu_provider(self):
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def gpu_options(self):
options = ort.SessionOptions()
options.enable_mem_pattern = False
return options
def test_inference_default_ddpm(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((128, 128))
# using the PNDM scheduler by default
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx",
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A fantasy landscape, trending on artstation"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
guidance_scale=7.5,
num_inference_steps=10,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972])
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
def test_inference_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((128, 128))
lms_scheduler = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler"
)
pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx",
scheduler=lms_scheduler,
provider=self.gpu_provider,
sess_options=self.gpu_options,
)
pipe.set_progress_bar_config(disable=None)
prompt = "A fantasy landscape, trending on artstation"
generator = np.random.RandomState(0)
output = pipe(
prompt=prompt,
image=init_image,
guidance_scale=7.5,
num_inference_steps=20,
generator=generator,
output_type="np",
)
images = output.images
image_slice = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
expected_slice = np.array(
[0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566]
)
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2