diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_diffusion_gligen
/test_stable_diffusion_gligen.py
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
EulerAncestralDiscreteScheduler, | |
StableDiffusionGLIGENPipeline, | |
UNet2DConditionModel, | |
) | |
from diffusers.utils.testing_utils import enable_full_determinism | |
from ..pipeline_params import ( | |
TEXT_TO_IMAGE_BATCH_PARAMS, | |
TEXT_TO_IMAGE_IMAGE_PARAMS, | |
TEXT_TO_IMAGE_PARAMS, | |
) | |
from ..test_pipelines_common import ( | |
PipelineFromPipeTesterMixin, | |
PipelineKarrasSchedulerTesterMixin, | |
PipelineLatentTesterMixin, | |
PipelineTesterMixin, | |
) | |
enable_full_determinism() | |
class GligenPipelineFastTests( | |
PipelineLatentTesterMixin, | |
PipelineKarrasSchedulerTesterMixin, | |
PipelineTesterMixin, | |
PipelineFromPipeTesterMixin, | |
unittest.TestCase, | |
): | |
pipeline_class = StableDiffusionGLIGENPipeline | |
params = TEXT_TO_IMAGE_PARAMS | {"gligen_phrases", "gligen_boxes"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=32, | |
attention_type="gated", | |
) | |
# unet.position_net = PositionNet(32,32) | |
scheduler = DDIMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
clip_sample=False, | |
set_alpha_to_one=False, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=128, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A modern livingroom", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"gligen_phrases": ["a birthday cake"], | |
"gligen_boxes": [[0.2676, 0.6088, 0.4773, 0.7183]], | |
"output_type": "np", | |
} | |
return inputs | |
def test_stable_diffusion_gligen_default_case(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionGLIGENPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.5069, 0.5561, 0.4577, 0.4792, 0.5203, 0.4089, 0.5039, 0.4919, 0.4499]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_gligen_k_euler_ancestral(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionGLIGENPipeline(**components) | |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
output = sd_pipe(**inputs) | |
image = output.images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.425, 0.494, 0.429, 0.469, 0.525, 0.417, 0.533, 0.5, 0.47]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_attention_slicing_forward_pass(self): | |
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(batch_size=3, expected_max_diff=3e-3) | |