diffusers-sdxl-controlnet / tests /pipelines /stable_diffusion_xl /test_stable_diffusion_xl_inpaint.py
svjack's picture
Upload 1392 files
43b7e92 verified
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
LCMScheduler,
StableDiffusionXLInpaintPipeline,
UNet2DConditionModel,
UniPCMultistepScheduler,
)
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, slow, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
)
from ..test_pipelines_common import IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class StableDiffusionXLInpaintPipelineFastTests(
IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase
):
pipeline_class = StableDiffusionXLInpaintPipeline
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
image_params = frozenset([])
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
image_latents_params = frozenset([])
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union(
{
"add_text_embeds",
"add_time_ids",
"mask",
"masked_image_latents",
}
)
def get_dummy_components(self, skip_first_text_encoder=False, time_cond_proj_dim=None):
torch.manual_seed(0)
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
time_cond_proj_dim=time_cond_proj_dim,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
# SD2-specific config below
attention_head_dim=(2, 4),
use_linear_projection=True,
addition_embed_type="text_time",
addition_time_embed_dim=8,
transformer_layers_per_block=(1, 2),
projection_class_embeddings_input_dim=72, # 5 * 8 + 32
cross_attention_dim=64 if not skip_first_text_encoder else 32,
)
scheduler = EulerDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
steps_offset=1,
beta_schedule="scaled_linear",
timestep_spacing="leading",
)
torch.manual_seed(0)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
sample_size=128,
)
torch.manual_seed(0)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
# SD2-specific config below
hidden_act="gelu",
projection_dim=32,
)
text_encoder = CLIPTextModel(text_encoder_config)
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
torch.manual_seed(0)
image_encoder_config = CLIPVisionConfig(
hidden_size=32,
image_size=224,
projection_dim=32,
intermediate_size=37,
num_attention_heads=4,
num_channels=3,
num_hidden_layers=5,
patch_size=14,
)
image_encoder = CLIPVisionModelWithProjection(image_encoder_config)
feature_extractor = CLIPImageProcessor(
crop_size=224,
do_center_crop=True,
do_normalize=True,
do_resize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
resample=3,
size=224,
)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder if not skip_first_text_encoder else None,
"tokenizer": tokenizer if not skip_first_text_encoder else None,
"text_encoder_2": text_encoder_2,
"tokenizer_2": tokenizer_2,
"image_encoder": image_encoder,
"feature_extractor": feature_extractor,
"requires_aesthetics_score": True,
}
return components
def get_dummy_inputs(self, device, seed=0):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
image = image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
# create mask
image[8:, 8:, :] = 255
mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64))
if str(device).startswith("mps"):
generator = torch.manual_seed(seed)
else:
generator = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": "A painting of a squirrel eating a burger",
"image": init_image,
"mask_image": mask_image,
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"strength": 1.0,
"output_type": "np",
}
return inputs
def get_dummy_inputs_2images(self, device, seed=0, img_res=64):
# Get random floats in [0, 1] as image with spatial size (img_res, img_res)
image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device)
image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device)
# Convert images to [-1, 1]
init_image1 = 2.0 * image1 - 1.0
init_image2 = 2.0 * image2 - 1.0
# empty mask
mask_image = torch.zeros((1, 1, img_res, img_res), device=device)
if str(device).startswith("mps"):
generator1 = torch.manual_seed(seed)
generator2 = torch.manual_seed(seed)
else:
generator1 = torch.Generator(device=device).manual_seed(seed)
generator2 = torch.Generator(device=device).manual_seed(seed)
inputs = {
"prompt": ["A painting of a squirrel eating a burger"] * 2,
"image": [init_image1, init_image2],
"mask_image": [mask_image] * 2,
"generator": [generator1, generator2],
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "np",
}
return inputs
def test_ip_adapter_single(self):
expected_pipe_slice = None
if torch_device == "cpu":
expected_pipe_slice = np.array([0.7971, 0.5371, 0.5973, 0.5642, 0.6689, 0.6894, 0.5770, 0.6063, 0.5261])
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice)
def test_components_function(self):
init_components = self.get_dummy_components()
init_components.pop("requires_aesthetics_score")
pipe = self.pipeline_class(**init_components)
self.assertTrue(hasattr(pipe, "components"))
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
def test_stable_diffusion_xl_inpaint_euler(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.8029, 0.5523, 0.5825, 0.6003, 0.6702, 0.7018, 0.6369, 0.5955, 0.5123])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_xl_inpaint_euler_lcm(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(time_cond_proj_dim=256)
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.config)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6611, 0.5569, 0.5531, 0.5471, 0.5918, 0.6393, 0.5074, 0.5468, 0.5185])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_xl_inpaint_euler_lcm_custom_timesteps(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(time_cond_proj_dim=256)
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.config)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
del inputs["num_inference_steps"]
inputs["timesteps"] = [999, 499]
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.6611, 0.5569, 0.5531, 0.5471, 0.5918, 0.6393, 0.5074, 0.5468, 0.5185])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_attention_slicing_forward_pass(self):
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)
def test_inference_batch_single_identical(self):
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
# TODO(Patrick, Sayak) - skip for now as this requires more refiner tests
def test_save_load_optional_components(self):
pass
def test_stable_diffusion_xl_inpaint_negative_prompt_embeds(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
# forward without prompt embeds
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
inputs["negative_prompt"] = negative_prompt
inputs["prompt"] = 3 * [inputs["prompt"]]
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
inputs = self.get_dummy_inputs(torch_device)
negative_prompt = 3 * ["this is a negative prompt"]
prompt = 3 * [inputs.pop("prompt")]
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt)
output = sd_pipe(
**inputs,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
)
image_slice_2 = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
@require_torch_gpu
def test_stable_diffusion_xl_offloads(self):
pipes = []
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe.enable_model_cpu_offload()
pipes.append(sd_pipe)
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe.enable_sequential_cpu_offload()
pipes.append(sd_pipe)
image_slices = []
for pipe in pipes:
pipe.unet.set_default_attn_processor()
inputs = self.get_dummy_inputs(torch_device)
image = pipe(**inputs).images
image_slices.append(image[0, -3:, -3:, -1].flatten())
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
def test_stable_diffusion_xl_refiner(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components(skip_first_text_encoder=True)
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
expected_slice = np.array([0.7045, 0.4838, 0.5454, 0.6270, 0.6168, 0.6717, 0.6484, 0.5681, 0.4922])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_two_xl_mixture_of_denoiser_fast(self):
components = self.get_dummy_components()
pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_1.unet.set_default_attn_processor()
pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_2.unet.set_default_attn_processor()
def assert_run_mixture(
num_steps, split, scheduler_cls_orig, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps
):
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = num_steps
class scheduler_cls(scheduler_cls_orig):
pass
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)
# Let's retrieve the number of timesteps we want to use
pipe_1.scheduler.set_timesteps(num_steps)
expected_steps = pipe_1.scheduler.timesteps.tolist()
split_ts = num_train_timesteps - int(round(num_train_timesteps * split))
if pipe_1.scheduler.order == 2:
expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps))
expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split_ts, expected_steps))
expected_steps = expected_steps_1 + expected_steps_2
else:
expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps))
expected_steps_2 = list(filter(lambda ts: ts < split_ts, expected_steps))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps = []
old_step = copy.copy(scheduler_cls.step)
def new_step(self, *args, **kwargs):
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t`
return old_step(self, *args, **kwargs)
scheduler_cls.step = new_step
inputs_1 = {**inputs, **{"denoising_end": split, "output_type": "latent"}}
latents = pipe_1(**inputs_1).images[0]
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"
inputs_2 = {**inputs, **{"denoising_start": split, "image": latents}}
pipe_2(**inputs_2).images[0]
assert expected_steps_2 == done_steps[len(expected_steps_1) :]
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"
for steps in [7, 20]:
assert_run_mixture(steps, 0.33, EulerDiscreteScheduler)
assert_run_mixture(steps, 0.33, HeunDiscreteScheduler)
@slow
def test_stable_diffusion_two_xl_mixture_of_denoiser(self):
components = self.get_dummy_components()
pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_1.unet.set_default_attn_processor()
pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_2.unet.set_default_attn_processor()
def assert_run_mixture(
num_steps, split, scheduler_cls_orig, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps
):
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = num_steps
class scheduler_cls(scheduler_cls_orig):
pass
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)
# Let's retrieve the number of timesteps we want to use
pipe_1.scheduler.set_timesteps(num_steps)
expected_steps = pipe_1.scheduler.timesteps.tolist()
split_ts = num_train_timesteps - int(round(num_train_timesteps * split))
if pipe_1.scheduler.order == 2:
expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps))
expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split_ts, expected_steps))
expected_steps = expected_steps_1 + expected_steps_2
else:
expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps))
expected_steps_2 = list(filter(lambda ts: ts < split_ts, expected_steps))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps = []
old_step = copy.copy(scheduler_cls.step)
def new_step(self, *args, **kwargs):
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t`
return old_step(self, *args, **kwargs)
scheduler_cls.step = new_step
inputs_1 = {**inputs, **{"denoising_end": split, "output_type": "latent"}}
latents = pipe_1(**inputs_1).images[0]
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"
inputs_2 = {**inputs, **{"denoising_start": split, "image": latents}}
pipe_2(**inputs_2).images[0]
assert expected_steps_2 == done_steps[len(expected_steps_1) :]
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"
for steps in [5, 8, 20]:
for split in [0.33, 0.49, 0.71]:
for scheduler_cls in [
DDIMScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
UniPCMultistepScheduler,
HeunDiscreteScheduler,
]:
assert_run_mixture(steps, split, scheduler_cls)
@slow
def test_stable_diffusion_three_xl_mixture_of_denoiser(self):
components = self.get_dummy_components()
pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_1.unet.set_default_attn_processor()
pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_2.unet.set_default_attn_processor()
pipe_3 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
pipe_3.unet.set_default_attn_processor()
def assert_run_mixture(
num_steps,
split_1,
split_2,
scheduler_cls_orig,
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps,
):
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = num_steps
class scheduler_cls(scheduler_cls_orig):
pass
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)
pipe_3.scheduler = scheduler_cls.from_config(pipe_3.scheduler.config)
# Let's retrieve the number of timesteps we want to use
pipe_1.scheduler.set_timesteps(num_steps)
expected_steps = pipe_1.scheduler.timesteps.tolist()
split_1_ts = num_train_timesteps - int(round(num_train_timesteps * split_1))
split_2_ts = num_train_timesteps - int(round(num_train_timesteps * split_2))
if pipe_1.scheduler.order == 2:
expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps))
expected_steps_2 = expected_steps_1[-1:] + list(
filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps)
)
expected_steps_3 = expected_steps_2[-1:] + list(filter(lambda ts: ts < split_2_ts, expected_steps))
expected_steps = expected_steps_1 + expected_steps_2 + expected_steps_3
else:
expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps))
expected_steps_2 = list(filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps))
expected_steps_3 = list(filter(lambda ts: ts < split_2_ts, expected_steps))
# now we monkey patch step `done_steps`
# list into the step function for testing
done_steps = []
old_step = copy.copy(scheduler_cls.step)
def new_step(self, *args, **kwargs):
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t`
return old_step(self, *args, **kwargs)
scheduler_cls.step = new_step
inputs_1 = {**inputs, **{"denoising_end": split_1, "output_type": "latent"}}
latents = pipe_1(**inputs_1).images[0]
assert (
expected_steps_1 == done_steps
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}"
inputs_2 = {
**inputs,
**{"denoising_start": split_1, "denoising_end": split_2, "image": latents, "output_type": "latent"},
}
pipe_2(**inputs_2).images[0]
assert expected_steps_2 == done_steps[len(expected_steps_1) :]
inputs_3 = {**inputs, **{"denoising_start": split_2, "image": latents}}
pipe_3(**inputs_3).images[0]
assert expected_steps_3 == done_steps[len(expected_steps_1) + len(expected_steps_2) :]
assert (
expected_steps == done_steps
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}"
for steps in [7, 11, 20]:
for split_1, split_2 in zip([0.19, 0.32], [0.81, 0.68]):
for scheduler_cls in [
DDIMScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
UniPCMultistepScheduler,
HeunDiscreteScheduler,
]:
assert_run_mixture(steps, split_1, split_2, scheduler_cls)
def test_stable_diffusion_xl_multi_prompts(self):
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(torch_device)
# forward with single prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["prompt_2"] = inputs["prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["prompt_2"] = "different prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
# manually set a negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
output = sd_pipe(**inputs)
image_slice_1 = output.images[0, -3:, -3:, -1]
# forward with same negative_prompt duplicated
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = inputs["negative_prompt"]
output = sd_pipe(**inputs)
image_slice_2 = output.images[0, -3:, -3:, -1]
# ensure the results are equal
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4
# forward with different negative_prompt
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 5
inputs["negative_prompt"] = "negative prompt"
inputs["negative_prompt_2"] = "different negative prompt"
output = sd_pipe(**inputs)
image_slice_3 = output.images[0, -3:, -3:, -1]
# ensure the results are not equal
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4
def test_stable_diffusion_xl_img2img_negative_conditions(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
image = sd_pipe(**inputs).images
image_slice_with_no_neg_conditions = image[0, -3:, -3:, -1]
image = sd_pipe(
**inputs,
negative_original_size=(512, 512),
negative_crops_coords_top_left=(
0,
0,
),
negative_target_size=(1024, 1024),
).images
image_slice_with_neg_conditions = image[0, -3:, -3:, -1]
assert (
np.abs(image_slice_with_no_neg_conditions.flatten() - image_slice_with_neg_conditions.flatten()).max()
> 1e-4
)
def test_stable_diffusion_xl_inpaint_mask_latents(self):
device = "cpu"
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components).to(device)
sd_pipe.set_progress_bar_config(disable=None)
# normal mask + normal image
## `image`: pil, `mask_image``: pil, `masked_image_latents``: None
inputs = self.get_dummy_inputs(device)
inputs["strength"] = 0.9
out_0 = sd_pipe(**inputs).images
# image latents + mask latents
inputs = self.get_dummy_inputs(device)
image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device)
mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device)
masked_image = image * (mask < 0.5)
generator = torch.Generator(device=device).manual_seed(0)
image_latents = sd_pipe._encode_vae_image(image, generator=generator)
torch.randn((1, 4, 32, 32), generator=generator)
mask_latents = sd_pipe._encode_vae_image(masked_image, generator=generator)
inputs["image"] = image_latents
inputs["masked_image_latents"] = mask_latents
inputs["mask_image"] = mask
inputs["strength"] = 0.9
generator = torch.Generator(device=device).manual_seed(0)
torch.randn((1, 4, 32, 32), generator=generator)
inputs["generator"] = generator
out_1 = sd_pipe(**inputs).images
assert np.abs(out_0 - out_1).max() < 1e-2
def test_stable_diffusion_xl_inpaint_2_images(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
sd_pipe = self.pipeline_class(**components)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
# test to confirm if we pass two same image, we will get same output
inputs = self.get_dummy_inputs(device)
gen1 = torch.Generator(device=device).manual_seed(0)
gen2 = torch.Generator(device=device).manual_seed(0)
for name in ["prompt", "image", "mask_image"]:
inputs[name] = [inputs[name]] * 2
inputs["generator"] = [gen1, gen2]
images = sd_pipe(**inputs).images
assert images.shape == (2, 64, 64, 3)
image_slice1 = images[0, -3:, -3:, -1]
image_slice2 = images[1, -3:, -3:, -1]
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4
# test to confirm that if we pass two different images, we will get different output
inputs = self.get_dummy_inputs_2images(device)
images = sd_pipe(**inputs).images
assert images.shape == (2, 64, 64, 3)
image_slice1 = images[0, -3:, -3:, -1]
image_slice2 = images[1, -3:, -3:, -1]
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2
def test_pipeline_interrupt(self):
components = self.get_dummy_components()
sd_pipe = StableDiffusionXLInpaintPipeline(**components)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = "hey"
num_inference_steps = 5
# store intermediate latents from the generation process
class PipelineState:
def __init__(self):
self.state = []
def apply(self, pipe, i, t, callback_kwargs):
self.state.append(callback_kwargs["latents"])
return callback_kwargs
pipe_state = PipelineState()
sd_pipe(
prompt,
image=inputs["image"],
mask_image=inputs["mask_image"],
strength=0.8,
num_inference_steps=num_inference_steps,
output_type="np",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=pipe_state.apply,
).images
# interrupt generation at step index
interrupt_step_idx = 1
def callback_on_step_end(pipe, i, t, callback_kwargs):
if i == interrupt_step_idx:
pipe._interrupt = True
return callback_kwargs
output_interrupted = sd_pipe(
prompt,
image=inputs["image"],
mask_image=inputs["mask_image"],
strength=0.8,
num_inference_steps=num_inference_steps,
output_type="latent",
generator=torch.Generator("cpu").manual_seed(0),
callback_on_step_end=callback_on_step_end,
).images
# fetch intermediate latents at the interrupted step
# from the completed generation process
intermediate_latent = pipe_state.state[interrupt_step_idx]
# compare the intermediate latent to the output of the interrupted process
# they should be the same
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4)