diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_diffusion_xl
/test_stable_diffusion_xl_inpaint.py
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import copy | |
import random | |
import unittest | |
import numpy as np | |
import torch | |
from PIL import Image | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPTextConfig, | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
CLIPTokenizer, | |
CLIPVisionConfig, | |
CLIPVisionModelWithProjection, | |
) | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
DPMSolverMultistepScheduler, | |
EulerDiscreteScheduler, | |
HeunDiscreteScheduler, | |
LCMScheduler, | |
StableDiffusionXLInpaintPipeline, | |
UNet2DConditionModel, | |
UniPCMultistepScheduler, | |
) | |
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, slow, torch_device | |
from ..pipeline_params import ( | |
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, | |
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, | |
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
) | |
from ..test_pipelines_common import IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin | |
enable_full_determinism() | |
class StableDiffusionXLInpaintPipelineFastTests( | |
IPAdapterTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase | |
): | |
pipeline_class = StableDiffusionXLInpaintPipeline | |
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS | |
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS | |
image_params = frozenset([]) | |
# TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess | |
image_latents_params = frozenset([]) | |
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union( | |
{ | |
"add_text_embeds", | |
"add_time_ids", | |
"mask", | |
"masked_image_latents", | |
} | |
) | |
def get_dummy_components(self, skip_first_text_encoder=False, time_cond_proj_dim=None): | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
block_out_channels=(32, 64), | |
layers_per_block=2, | |
sample_size=32, | |
in_channels=4, | |
out_channels=4, | |
time_cond_proj_dim=time_cond_proj_dim, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
# SD2-specific config below | |
attention_head_dim=(2, 4), | |
use_linear_projection=True, | |
addition_embed_type="text_time", | |
addition_time_embed_dim=8, | |
transformer_layers_per_block=(1, 2), | |
projection_class_embeddings_input_dim=72, # 5 * 8 + 32 | |
cross_attention_dim=64 if not skip_first_text_encoder else 32, | |
) | |
scheduler = EulerDiscreteScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
steps_offset=1, | |
beta_schedule="scaled_linear", | |
timestep_spacing="leading", | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL( | |
block_out_channels=[32, 64], | |
in_channels=3, | |
out_channels=3, | |
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
latent_channels=4, | |
sample_size=128, | |
) | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
bos_token_id=0, | |
eos_token_id=2, | |
hidden_size=32, | |
intermediate_size=37, | |
layer_norm_eps=1e-05, | |
num_attention_heads=4, | |
num_hidden_layers=5, | |
pad_token_id=1, | |
vocab_size=1000, | |
# SD2-specific config below | |
hidden_act="gelu", | |
projection_dim=32, | |
) | |
text_encoder = CLIPTextModel(text_encoder_config) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | |
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
torch.manual_seed(0) | |
image_encoder_config = CLIPVisionConfig( | |
hidden_size=32, | |
image_size=224, | |
projection_dim=32, | |
intermediate_size=37, | |
num_attention_heads=4, | |
num_channels=3, | |
num_hidden_layers=5, | |
patch_size=14, | |
) | |
image_encoder = CLIPVisionModelWithProjection(image_encoder_config) | |
feature_extractor = CLIPImageProcessor( | |
crop_size=224, | |
do_center_crop=True, | |
do_normalize=True, | |
do_resize=True, | |
image_mean=[0.48145466, 0.4578275, 0.40821073], | |
image_std=[0.26862954, 0.26130258, 0.27577711], | |
resample=3, | |
size=224, | |
) | |
components = { | |
"unet": unet, | |
"scheduler": scheduler, | |
"vae": vae, | |
"text_encoder": text_encoder if not skip_first_text_encoder else None, | |
"tokenizer": tokenizer if not skip_first_text_encoder else None, | |
"text_encoder_2": text_encoder_2, | |
"tokenizer_2": tokenizer_2, | |
"image_encoder": image_encoder, | |
"feature_extractor": feature_extractor, | |
"requires_aesthetics_score": True, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched | |
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
image = image.cpu().permute(0, 2, 3, 1)[0] | |
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) | |
# create mask | |
image[8:, 8:, :] = 255 | |
mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64)) | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"image": init_image, | |
"mask_image": mask_image, | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"strength": 1.0, | |
"output_type": "np", | |
} | |
return inputs | |
def get_dummy_inputs_2images(self, device, seed=0, img_res=64): | |
# Get random floats in [0, 1] as image with spatial size (img_res, img_res) | |
image1 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed)).to(device) | |
image2 = floats_tensor((1, 3, img_res, img_res), rng=random.Random(seed + 22)).to(device) | |
# Convert images to [-1, 1] | |
init_image1 = 2.0 * image1 - 1.0 | |
init_image2 = 2.0 * image2 - 1.0 | |
# empty mask | |
mask_image = torch.zeros((1, 1, img_res, img_res), device=device) | |
if str(device).startswith("mps"): | |
generator1 = torch.manual_seed(seed) | |
generator2 = torch.manual_seed(seed) | |
else: | |
generator1 = torch.Generator(device=device).manual_seed(seed) | |
generator2 = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": ["A painting of a squirrel eating a burger"] * 2, | |
"image": [init_image1, init_image2], | |
"mask_image": [mask_image] * 2, | |
"generator": [generator1, generator2], | |
"num_inference_steps": 2, | |
"guidance_scale": 6.0, | |
"output_type": "np", | |
} | |
return inputs | |
def test_ip_adapter_single(self): | |
expected_pipe_slice = None | |
if torch_device == "cpu": | |
expected_pipe_slice = np.array([0.7971, 0.5371, 0.5973, 0.5642, 0.6689, 0.6894, 0.5770, 0.6063, 0.5261]) | |
return super().test_ip_adapter_single(expected_pipe_slice=expected_pipe_slice) | |
def test_components_function(self): | |
init_components = self.get_dummy_components() | |
init_components.pop("requires_aesthetics_score") | |
pipe = self.pipeline_class(**init_components) | |
self.assertTrue(hasattr(pipe, "components")) | |
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys())) | |
def test_stable_diffusion_xl_inpaint_euler(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLInpaintPipeline(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.8029, 0.5523, 0.5825, 0.6003, 0.6702, 0.7018, 0.6369, 0.5955, 0.5123]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_xl_inpaint_euler_lcm(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=256) | |
sd_pipe = StableDiffusionXLInpaintPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.config) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.6611, 0.5569, 0.5531, 0.5471, 0.5918, 0.6393, 0.5074, 0.5468, 0.5185]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_xl_inpaint_euler_lcm_custom_timesteps(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(time_cond_proj_dim=256) | |
sd_pipe = StableDiffusionXLInpaintPipeline(**components) | |
sd_pipe.scheduler = LCMScheduler.from_config(sd_pipe.config) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
del inputs["num_inference_steps"] | |
inputs["timesteps"] = [999, 499] | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.6611, 0.5569, 0.5531, 0.5471, 0.5918, 0.6393, 0.5074, 0.5468, 0.5185]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_attention_slicing_forward_pass(self): | |
super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) | |
def test_inference_batch_single_identical(self): | |
super().test_inference_batch_single_identical(expected_max_diff=3e-3) | |
# TODO(Patrick, Sayak) - skip for now as this requires more refiner tests | |
def test_save_load_optional_components(self): | |
pass | |
def test_stable_diffusion_xl_inpaint_negative_prompt_embeds(self): | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLInpaintPipeline(**components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# forward without prompt embeds | |
inputs = self.get_dummy_inputs(torch_device) | |
negative_prompt = 3 * ["this is a negative prompt"] | |
inputs["negative_prompt"] = negative_prompt | |
inputs["prompt"] = 3 * [inputs["prompt"]] | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with prompt embeds | |
inputs = self.get_dummy_inputs(torch_device) | |
negative_prompt = 3 * ["this is a negative prompt"] | |
prompt = 3 * [inputs.pop("prompt")] | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt) | |
output = sd_pipe( | |
**inputs, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# make sure that it's equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
def test_stable_diffusion_xl_offloads(self): | |
pipes = [] | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLInpaintPipeline(**components).to(torch_device) | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLInpaintPipeline(**components) | |
sd_pipe.enable_model_cpu_offload() | |
pipes.append(sd_pipe) | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLInpaintPipeline(**components) | |
sd_pipe.enable_sequential_cpu_offload() | |
pipes.append(sd_pipe) | |
image_slices = [] | |
for pipe in pipes: | |
pipe.unet.set_default_attn_processor() | |
inputs = self.get_dummy_inputs(torch_device) | |
image = pipe(**inputs).images | |
image_slices.append(image[0, -3:, -3:, -1].flatten()) | |
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3 | |
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3 | |
def test_stable_diffusion_xl_refiner(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components(skip_first_text_encoder=True) | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
assert image.shape == (1, 64, 64, 3) | |
expected_slice = np.array([0.7045, 0.4838, 0.5454, 0.6270, 0.6168, 0.6717, 0.6484, 0.5681, 0.4922]) | |
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
def test_stable_diffusion_two_xl_mixture_of_denoiser_fast(self): | |
components = self.get_dummy_components() | |
pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) | |
pipe_1.unet.set_default_attn_processor() | |
pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) | |
pipe_2.unet.set_default_attn_processor() | |
def assert_run_mixture( | |
num_steps, split, scheduler_cls_orig, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps | |
): | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = num_steps | |
class scheduler_cls(scheduler_cls_orig): | |
pass | |
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) | |
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) | |
# Let's retrieve the number of timesteps we want to use | |
pipe_1.scheduler.set_timesteps(num_steps) | |
expected_steps = pipe_1.scheduler.timesteps.tolist() | |
split_ts = num_train_timesteps - int(round(num_train_timesteps * split)) | |
if pipe_1.scheduler.order == 2: | |
expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps)) | |
expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split_ts, expected_steps)) | |
expected_steps = expected_steps_1 + expected_steps_2 | |
else: | |
expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps)) | |
expected_steps_2 = list(filter(lambda ts: ts < split_ts, expected_steps)) | |
# now we monkey patch step `done_steps` | |
# list into the step function for testing | |
done_steps = [] | |
old_step = copy.copy(scheduler_cls.step) | |
def new_step(self, *args, **kwargs): | |
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t` | |
return old_step(self, *args, **kwargs) | |
scheduler_cls.step = new_step | |
inputs_1 = {**inputs, **{"denoising_end": split, "output_type": "latent"}} | |
latents = pipe_1(**inputs_1).images[0] | |
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" | |
inputs_2 = {**inputs, **{"denoising_start": split, "image": latents}} | |
pipe_2(**inputs_2).images[0] | |
assert expected_steps_2 == done_steps[len(expected_steps_1) :] | |
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" | |
for steps in [7, 20]: | |
assert_run_mixture(steps, 0.33, EulerDiscreteScheduler) | |
assert_run_mixture(steps, 0.33, HeunDiscreteScheduler) | |
def test_stable_diffusion_two_xl_mixture_of_denoiser(self): | |
components = self.get_dummy_components() | |
pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) | |
pipe_1.unet.set_default_attn_processor() | |
pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) | |
pipe_2.unet.set_default_attn_processor() | |
def assert_run_mixture( | |
num_steps, split, scheduler_cls_orig, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps | |
): | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = num_steps | |
class scheduler_cls(scheduler_cls_orig): | |
pass | |
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) | |
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) | |
# Let's retrieve the number of timesteps we want to use | |
pipe_1.scheduler.set_timesteps(num_steps) | |
expected_steps = pipe_1.scheduler.timesteps.tolist() | |
split_ts = num_train_timesteps - int(round(num_train_timesteps * split)) | |
if pipe_1.scheduler.order == 2: | |
expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps)) | |
expected_steps_2 = expected_steps_1[-1:] + list(filter(lambda ts: ts < split_ts, expected_steps)) | |
expected_steps = expected_steps_1 + expected_steps_2 | |
else: | |
expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps)) | |
expected_steps_2 = list(filter(lambda ts: ts < split_ts, expected_steps)) | |
# now we monkey patch step `done_steps` | |
# list into the step function for testing | |
done_steps = [] | |
old_step = copy.copy(scheduler_cls.step) | |
def new_step(self, *args, **kwargs): | |
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t` | |
return old_step(self, *args, **kwargs) | |
scheduler_cls.step = new_step | |
inputs_1 = {**inputs, **{"denoising_end": split, "output_type": "latent"}} | |
latents = pipe_1(**inputs_1).images[0] | |
assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" | |
inputs_2 = {**inputs, **{"denoising_start": split, "image": latents}} | |
pipe_2(**inputs_2).images[0] | |
assert expected_steps_2 == done_steps[len(expected_steps_1) :] | |
assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}" | |
for steps in [5, 8, 20]: | |
for split in [0.33, 0.49, 0.71]: | |
for scheduler_cls in [ | |
DDIMScheduler, | |
EulerDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
UniPCMultistepScheduler, | |
HeunDiscreteScheduler, | |
]: | |
assert_run_mixture(steps, split, scheduler_cls) | |
def test_stable_diffusion_three_xl_mixture_of_denoiser(self): | |
components = self.get_dummy_components() | |
pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) | |
pipe_1.unet.set_default_attn_processor() | |
pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) | |
pipe_2.unet.set_default_attn_processor() | |
pipe_3 = StableDiffusionXLInpaintPipeline(**components).to(torch_device) | |
pipe_3.unet.set_default_attn_processor() | |
def assert_run_mixture( | |
num_steps, | |
split_1, | |
split_2, | |
scheduler_cls_orig, | |
num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps, | |
): | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = num_steps | |
class scheduler_cls(scheduler_cls_orig): | |
pass | |
pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config) | |
pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config) | |
pipe_3.scheduler = scheduler_cls.from_config(pipe_3.scheduler.config) | |
# Let's retrieve the number of timesteps we want to use | |
pipe_1.scheduler.set_timesteps(num_steps) | |
expected_steps = pipe_1.scheduler.timesteps.tolist() | |
split_1_ts = num_train_timesteps - int(round(num_train_timesteps * split_1)) | |
split_2_ts = num_train_timesteps - int(round(num_train_timesteps * split_2)) | |
if pipe_1.scheduler.order == 2: | |
expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps)) | |
expected_steps_2 = expected_steps_1[-1:] + list( | |
filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps) | |
) | |
expected_steps_3 = expected_steps_2[-1:] + list(filter(lambda ts: ts < split_2_ts, expected_steps)) | |
expected_steps = expected_steps_1 + expected_steps_2 + expected_steps_3 | |
else: | |
expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps)) | |
expected_steps_2 = list(filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps)) | |
expected_steps_3 = list(filter(lambda ts: ts < split_2_ts, expected_steps)) | |
# now we monkey patch step `done_steps` | |
# list into the step function for testing | |
done_steps = [] | |
old_step = copy.copy(scheduler_cls.step) | |
def new_step(self, *args, **kwargs): | |
done_steps.append(args[1].cpu().item()) # args[1] is always the passed `t` | |
return old_step(self, *args, **kwargs) | |
scheduler_cls.step = new_step | |
inputs_1 = {**inputs, **{"denoising_end": split_1, "output_type": "latent"}} | |
latents = pipe_1(**inputs_1).images[0] | |
assert ( | |
expected_steps_1 == done_steps | |
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}" | |
inputs_2 = { | |
**inputs, | |
**{"denoising_start": split_1, "denoising_end": split_2, "image": latents, "output_type": "latent"}, | |
} | |
pipe_2(**inputs_2).images[0] | |
assert expected_steps_2 == done_steps[len(expected_steps_1) :] | |
inputs_3 = {**inputs, **{"denoising_start": split_2, "image": latents}} | |
pipe_3(**inputs_3).images[0] | |
assert expected_steps_3 == done_steps[len(expected_steps_1) + len(expected_steps_2) :] | |
assert ( | |
expected_steps == done_steps | |
), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}" | |
for steps in [7, 11, 20]: | |
for split_1, split_2 in zip([0.19, 0.32], [0.81, 0.68]): | |
for scheduler_cls in [ | |
DDIMScheduler, | |
EulerDiscreteScheduler, | |
DPMSolverMultistepScheduler, | |
UniPCMultistepScheduler, | |
HeunDiscreteScheduler, | |
]: | |
assert_run_mixture(steps, split_1, split_2, scheduler_cls) | |
def test_stable_diffusion_xl_multi_prompts(self): | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(torch_device) | |
# forward with single prompt | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = 5 | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with same prompt duplicated | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = 5 | |
inputs["prompt_2"] = inputs["prompt"] | |
output = sd_pipe(**inputs) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# ensure the results are equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
# forward with different prompt | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = 5 | |
inputs["prompt_2"] = "different prompt" | |
output = sd_pipe(**inputs) | |
image_slice_3 = output.images[0, -3:, -3:, -1] | |
# ensure the results are not equal | |
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 | |
# manually set a negative_prompt | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = 5 | |
inputs["negative_prompt"] = "negative prompt" | |
output = sd_pipe(**inputs) | |
image_slice_1 = output.images[0, -3:, -3:, -1] | |
# forward with same negative_prompt duplicated | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = 5 | |
inputs["negative_prompt"] = "negative prompt" | |
inputs["negative_prompt_2"] = inputs["negative_prompt"] | |
output = sd_pipe(**inputs) | |
image_slice_2 = output.images[0, -3:, -3:, -1] | |
# ensure the results are equal | |
assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4 | |
# forward with different negative_prompt | |
inputs = self.get_dummy_inputs(torch_device) | |
inputs["num_inference_steps"] = 5 | |
inputs["negative_prompt"] = "negative prompt" | |
inputs["negative_prompt_2"] = "different negative prompt" | |
output = sd_pipe(**inputs) | |
image_slice_3 = output.images[0, -3:, -3:, -1] | |
# ensure the results are not equal | |
assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4 | |
def test_stable_diffusion_xl_img2img_negative_conditions(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe(**inputs).images | |
image_slice_with_no_neg_conditions = image[0, -3:, -3:, -1] | |
image = sd_pipe( | |
**inputs, | |
negative_original_size=(512, 512), | |
negative_crops_coords_top_left=( | |
0, | |
0, | |
), | |
negative_target_size=(1024, 1024), | |
).images | |
image_slice_with_neg_conditions = image[0, -3:, -3:, -1] | |
assert ( | |
np.abs(image_slice_with_no_neg_conditions.flatten() - image_slice_with_neg_conditions.flatten()).max() | |
> 1e-4 | |
) | |
def test_stable_diffusion_xl_inpaint_mask_latents(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components).to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# normal mask + normal image | |
## `image`: pil, `mask_image``: pil, `masked_image_latents``: None | |
inputs = self.get_dummy_inputs(device) | |
inputs["strength"] = 0.9 | |
out_0 = sd_pipe(**inputs).images | |
# image latents + mask latents | |
inputs = self.get_dummy_inputs(device) | |
image = sd_pipe.image_processor.preprocess(inputs["image"]).to(sd_pipe.device) | |
mask = sd_pipe.mask_processor.preprocess(inputs["mask_image"]).to(sd_pipe.device) | |
masked_image = image * (mask < 0.5) | |
generator = torch.Generator(device=device).manual_seed(0) | |
image_latents = sd_pipe._encode_vae_image(image, generator=generator) | |
torch.randn((1, 4, 32, 32), generator=generator) | |
mask_latents = sd_pipe._encode_vae_image(masked_image, generator=generator) | |
inputs["image"] = image_latents | |
inputs["masked_image_latents"] = mask_latents | |
inputs["mask_image"] = mask | |
inputs["strength"] = 0.9 | |
generator = torch.Generator(device=device).manual_seed(0) | |
torch.randn((1, 4, 32, 32), generator=generator) | |
inputs["generator"] = generator | |
out_1 = sd_pipe(**inputs).images | |
assert np.abs(out_0 - out_1).max() < 1e-2 | |
def test_stable_diffusion_xl_inpaint_2_images(self): | |
device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
components = self.get_dummy_components() | |
sd_pipe = self.pipeline_class(**components) | |
sd_pipe = sd_pipe.to(device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
# test to confirm if we pass two same image, we will get same output | |
inputs = self.get_dummy_inputs(device) | |
gen1 = torch.Generator(device=device).manual_seed(0) | |
gen2 = torch.Generator(device=device).manual_seed(0) | |
for name in ["prompt", "image", "mask_image"]: | |
inputs[name] = [inputs[name]] * 2 | |
inputs["generator"] = [gen1, gen2] | |
images = sd_pipe(**inputs).images | |
assert images.shape == (2, 64, 64, 3) | |
image_slice1 = images[0, -3:, -3:, -1] | |
image_slice2 = images[1, -3:, -3:, -1] | |
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() < 1e-4 | |
# test to confirm that if we pass two different images, we will get different output | |
inputs = self.get_dummy_inputs_2images(device) | |
images = sd_pipe(**inputs).images | |
assert images.shape == (2, 64, 64, 3) | |
image_slice1 = images[0, -3:, -3:, -1] | |
image_slice2 = images[1, -3:, -3:, -1] | |
assert np.abs(image_slice1.flatten() - image_slice2.flatten()).max() > 1e-2 | |
def test_pipeline_interrupt(self): | |
components = self.get_dummy_components() | |
sd_pipe = StableDiffusionXLInpaintPipeline(**components) | |
sd_pipe = sd_pipe.to(torch_device) | |
sd_pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = "hey" | |
num_inference_steps = 5 | |
# store intermediate latents from the generation process | |
class PipelineState: | |
def __init__(self): | |
self.state = [] | |
def apply(self, pipe, i, t, callback_kwargs): | |
self.state.append(callback_kwargs["latents"]) | |
return callback_kwargs | |
pipe_state = PipelineState() | |
sd_pipe( | |
prompt, | |
image=inputs["image"], | |
mask_image=inputs["mask_image"], | |
strength=0.8, | |
num_inference_steps=num_inference_steps, | |
output_type="np", | |
generator=torch.Generator("cpu").manual_seed(0), | |
callback_on_step_end=pipe_state.apply, | |
).images | |
# interrupt generation at step index | |
interrupt_step_idx = 1 | |
def callback_on_step_end(pipe, i, t, callback_kwargs): | |
if i == interrupt_step_idx: | |
pipe._interrupt = True | |
return callback_kwargs | |
output_interrupted = sd_pipe( | |
prompt, | |
image=inputs["image"], | |
mask_image=inputs["mask_image"], | |
strength=0.8, | |
num_inference_steps=num_inference_steps, | |
output_type="latent", | |
generator=torch.Generator("cpu").manual_seed(0), | |
callback_on_step_end=callback_on_step_end, | |
).images | |
# fetch intermediate latents at the interrupted step | |
# from the completed generation process | |
intermediate_latent = pipe_state.state[interrupt_step_idx] | |
# compare the intermediate latent to the output of the interrupted process | |
# they should be the same | |
assert torch.allclose(intermediate_latent, output_interrupted, atol=1e-4) | |