|
import gc |
|
import unittest |
|
|
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DDPMScheduler, |
|
PriorTransformer, |
|
StableUnCLIPPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer |
|
from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, nightly, require_torch_gpu, torch_device |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import ( |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
assert_mean_pixel_difference, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableUnCLIPPipelineFastTests( |
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableUnCLIPPipeline |
|
params = TEXT_TO_IMAGE_PARAMS |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS |
|
|
|
|
|
test_xformers_attention = False |
|
|
|
def get_dummy_components(self): |
|
embedder_hidden_size = 32 |
|
embedder_projection_dim = embedder_hidden_size |
|
|
|
|
|
|
|
torch.manual_seed(0) |
|
prior_tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
torch.manual_seed(0) |
|
prior_text_encoder = CLIPTextModelWithProjection( |
|
CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=embedder_hidden_size, |
|
projection_dim=embedder_projection_dim, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
) |
|
|
|
torch.manual_seed(0) |
|
prior = PriorTransformer( |
|
num_attention_heads=2, |
|
attention_head_dim=12, |
|
embedding_dim=embedder_projection_dim, |
|
num_layers=1, |
|
) |
|
|
|
torch.manual_seed(0) |
|
prior_scheduler = DDPMScheduler( |
|
variance_type="fixed_small_log", |
|
prediction_type="sample", |
|
num_train_timesteps=1000, |
|
clip_sample=True, |
|
clip_sample_range=5.0, |
|
beta_schedule="squaredcos_cap_v2", |
|
) |
|
|
|
|
|
|
|
torch.manual_seed(0) |
|
image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size) |
|
image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2") |
|
|
|
torch.manual_seed(0) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
torch.manual_seed(0) |
|
text_encoder = CLIPTextModel( |
|
CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=embedder_hidden_size, |
|
projection_dim=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
) |
|
|
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), |
|
up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), |
|
block_out_channels=(32, 64), |
|
attention_head_dim=(2, 4), |
|
class_embed_type="projection", |
|
|
|
|
|
projection_class_embeddings_input_dim=embedder_projection_dim * 2, |
|
cross_attention_dim=embedder_hidden_size, |
|
layers_per_block=1, |
|
upcast_attention=True, |
|
use_linear_projection=True, |
|
) |
|
|
|
torch.manual_seed(0) |
|
scheduler = DDIMScheduler( |
|
beta_schedule="scaled_linear", |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
prediction_type="v_prediction", |
|
set_alpha_to_one=False, |
|
steps_offset=1, |
|
) |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL() |
|
|
|
components = { |
|
|
|
"prior_tokenizer": prior_tokenizer, |
|
"prior_text_encoder": prior_text_encoder, |
|
"prior": prior, |
|
"prior_scheduler": prior_scheduler, |
|
|
|
"image_normalizer": image_normalizer, |
|
"image_noising_scheduler": image_noising_scheduler, |
|
|
|
"tokenizer": tokenizer, |
|
"text_encoder": text_encoder, |
|
"unet": unet, |
|
"scheduler": scheduler, |
|
"vae": vae, |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"prior_num_inference_steps": 2, |
|
"output_type": "np", |
|
} |
|
return inputs |
|
|
|
|
|
|
|
def test_attention_slicing_forward_pass(self): |
|
test_max_difference = torch_device == "cpu" |
|
|
|
self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference) |
|
|
|
|
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=1e-3) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableUnCLIPPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_stable_unclip(self): |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" |
|
) |
|
|
|
pipe = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.float16) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
pipe.enable_attention_slicing() |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output = pipe("anime turle", generator=generator, output_type="np") |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (768, 768, 3) |
|
|
|
assert_mean_pixel_difference(image, expected_image) |
|
|
|
def test_stable_unclip_pipeline_with_sequential_cpu_offloading(self): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l", torch_dtype=torch.float16) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
_ = pipe( |
|
"anime turtle", |
|
prior_num_inference_steps=2, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 7 * 10**9 |
|
|