|
import gc |
|
import random |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import ( |
|
CLIPImageProcessor, |
|
CLIPTextConfig, |
|
CLIPTextModel, |
|
CLIPTokenizer, |
|
CLIPVisionConfig, |
|
CLIPVisionModelWithProjection, |
|
) |
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImg2ImgPipeline, UNet2DConditionModel |
|
from diffusers.pipelines.pipeline_utils import DiffusionPipeline |
|
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
floats_tensor, |
|
load_image, |
|
load_numpy, |
|
nightly, |
|
require_torch_gpu, |
|
skip_mps, |
|
torch_device, |
|
) |
|
|
|
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS |
|
from ..test_pipelines_common import ( |
|
PipelineKarrasSchedulerTesterMixin, |
|
PipelineLatentTesterMixin, |
|
PipelineTesterMixin, |
|
assert_mean_pixel_difference, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
class StableUnCLIPImg2ImgPipelineFastTests( |
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase |
|
): |
|
pipeline_class = StableUnCLIPImg2ImgPipeline |
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS |
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS |
|
image_params = frozenset( |
|
[] |
|
) |
|
image_latents_params = frozenset([]) |
|
|
|
def get_dummy_components(self): |
|
embedder_hidden_size = 32 |
|
embedder_projection_dim = embedder_hidden_size |
|
|
|
|
|
|
|
feature_extractor = CLIPImageProcessor(crop_size=32, size=32) |
|
|
|
torch.manual_seed(0) |
|
image_encoder = CLIPVisionModelWithProjection( |
|
CLIPVisionConfig( |
|
hidden_size=embedder_hidden_size, |
|
projection_dim=embedder_projection_dim, |
|
num_hidden_layers=5, |
|
num_attention_heads=4, |
|
image_size=32, |
|
intermediate_size=37, |
|
patch_size=1, |
|
) |
|
) |
|
|
|
|
|
|
|
torch.manual_seed(0) |
|
image_normalizer = StableUnCLIPImageNormalizer(embedding_dim=embedder_hidden_size) |
|
image_noising_scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2") |
|
|
|
torch.manual_seed(0) |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
|
|
torch.manual_seed(0) |
|
text_encoder = CLIPTextModel( |
|
CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=embedder_hidden_size, |
|
projection_dim=32, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
) |
|
|
|
torch.manual_seed(0) |
|
unet = UNet2DConditionModel( |
|
sample_size=32, |
|
in_channels=4, |
|
out_channels=4, |
|
down_block_types=("CrossAttnDownBlock2D", "DownBlock2D"), |
|
up_block_types=("UpBlock2D", "CrossAttnUpBlock2D"), |
|
block_out_channels=(32, 64), |
|
attention_head_dim=(2, 4), |
|
class_embed_type="projection", |
|
|
|
|
|
projection_class_embeddings_input_dim=embedder_projection_dim * 2, |
|
cross_attention_dim=embedder_hidden_size, |
|
layers_per_block=1, |
|
upcast_attention=True, |
|
use_linear_projection=True, |
|
) |
|
|
|
torch.manual_seed(0) |
|
scheduler = DDIMScheduler( |
|
beta_schedule="scaled_linear", |
|
beta_start=0.00085, |
|
beta_end=0.012, |
|
prediction_type="v_prediction", |
|
set_alpha_to_one=False, |
|
steps_offset=1, |
|
) |
|
|
|
torch.manual_seed(0) |
|
vae = AutoencoderKL() |
|
|
|
components = { |
|
|
|
"feature_extractor": feature_extractor, |
|
"image_encoder": image_encoder.eval(), |
|
|
|
"image_normalizer": image_normalizer.eval(), |
|
"image_noising_scheduler": image_noising_scheduler, |
|
|
|
"tokenizer": tokenizer, |
|
"text_encoder": text_encoder.eval(), |
|
"unet": unet.eval(), |
|
"scheduler": scheduler, |
|
"vae": vae.eval(), |
|
} |
|
|
|
return components |
|
|
|
def get_dummy_inputs(self, device, seed=0, pil_image=True): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
input_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) |
|
|
|
if pil_image: |
|
input_image = input_image * 0.5 + 0.5 |
|
input_image = input_image.clamp(0, 1) |
|
input_image = input_image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
input_image = DiffusionPipeline.numpy_to_pil(input_image)[0] |
|
|
|
return { |
|
"prompt": "An anime racoon running a marathon", |
|
"image": input_image, |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"output_type": "np", |
|
} |
|
|
|
@skip_mps |
|
def test_image_embeds_none(self): |
|
device = "cpu" |
|
components = self.get_dummy_components() |
|
sd_pipe = StableUnCLIPImg2ImgPipeline(**components) |
|
sd_pipe = sd_pipe.to(device) |
|
sd_pipe.set_progress_bar_config(disable=None) |
|
|
|
inputs = self.get_dummy_inputs(device) |
|
inputs.update({"image_embeds": None}) |
|
image = sd_pipe(**inputs).images |
|
image_slice = image[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 32, 32, 3) |
|
expected_slice = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 |
|
|
|
|
|
|
|
def test_attention_slicing_forward_pass(self): |
|
test_max_difference = torch_device in ["cpu", "mps"] |
|
|
|
self._test_attention_slicing_forward_pass(test_max_difference=test_max_difference) |
|
|
|
|
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical(expected_max_diff=1e-3) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=False) |
|
|
|
|
|
@nightly |
|
@require_torch_gpu |
|
class StableUnCLIPImg2ImgPipelineIntegrationTests(unittest.TestCase): |
|
def setUp(self): |
|
|
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_stable_unclip_l_img2img(self): |
|
input_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" |
|
) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" |
|
) |
|
|
|
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( |
|
"fusing/stable-unclip-2-1-l-img2img", torch_dtype=torch.float16 |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
pipe.enable_attention_slicing() |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output = pipe(input_image, "anime turle", generator=generator, output_type="np") |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (768, 768, 3) |
|
|
|
assert_mean_pixel_difference(image, expected_image) |
|
|
|
def test_stable_unclip_h_img2img(self): |
|
input_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" |
|
) |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" |
|
) |
|
|
|
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( |
|
"fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16 |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
|
|
pipe.enable_attention_slicing() |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output = pipe(input_image, "anime turle", generator=generator, output_type="np") |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (768, 768, 3) |
|
|
|
assert_mean_pixel_difference(image, expected_image) |
|
|
|
def test_stable_unclip_img2img_pipeline_with_sequential_cpu_offloading(self): |
|
input_image = load_image( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" |
|
) |
|
|
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|
|
pipe = StableUnCLIPImg2ImgPipeline.from_pretrained( |
|
"fusing/stable-unclip-2-1-h-img2img", torch_dtype=torch.float16 |
|
) |
|
pipe.set_progress_bar_config(disable=None) |
|
pipe.enable_attention_slicing() |
|
pipe.enable_sequential_cpu_offload() |
|
|
|
_ = pipe( |
|
input_image, |
|
"anime turtle", |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
|
|
assert mem_bytes < 7 * 10**9 |
|
|