|
import inspect |
|
import tempfile |
|
import unittest |
|
from typing import Dict, List, Tuple |
|
|
|
import torch |
|
|
|
from diffusers import EDMEulerScheduler |
|
|
|
from .test_schedulers import SchedulerCommonTest |
|
|
|
|
|
class EDMEulerSchedulerTest(SchedulerCommonTest): |
|
scheduler_classes = (EDMEulerScheduler,) |
|
forward_default_kwargs = (("num_inference_steps", 10),) |
|
|
|
def get_scheduler_config(self, **kwargs): |
|
config = { |
|
"num_train_timesteps": 256, |
|
"sigma_min": 0.002, |
|
"sigma_max": 80.0, |
|
} |
|
|
|
config.update(**kwargs) |
|
return config |
|
|
|
def test_timesteps(self): |
|
for timesteps in [10, 50, 100, 1000]: |
|
self.check_over_configs(num_train_timesteps=timesteps) |
|
|
|
def test_prediction_type(self): |
|
for prediction_type in ["epsilon", "v_prediction"]: |
|
self.check_over_configs(prediction_type=prediction_type) |
|
|
|
def test_full_loop_no_noise(self, num_inference_steps=10, seed=0): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma |
|
|
|
for i, t in enumerate(scheduler.timesteps): |
|
scaled_sample = scheduler.scale_model_input(sample, t) |
|
|
|
model_output = model(scaled_sample, t) |
|
|
|
output = scheduler.step(model_output, t, sample) |
|
sample = output.prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 34.1855) < 1e-3 |
|
assert abs(result_mean.item() - 0.044) < 1e-3 |
|
|
|
def test_full_loop_device(self, num_inference_steps=10, seed=0): |
|
scheduler_class = self.scheduler_classes[0] |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
model = self.dummy_model() |
|
sample = self.dummy_sample_deter * scheduler.init_noise_sigma |
|
|
|
for i, t in enumerate(scheduler.timesteps): |
|
scaled_sample = scheduler.scale_model_input(sample, t) |
|
|
|
model_output = model(scaled_sample, t) |
|
|
|
output = scheduler.step(model_output, t, sample) |
|
sample = output.prev_sample |
|
|
|
result_sum = torch.sum(torch.abs(sample)) |
|
result_mean = torch.mean(torch.abs(sample)) |
|
|
|
assert abs(result_sum.item() - 34.1855) < 1e-3 |
|
assert abs(result_mean.item() - 0.044) < 1e-3 |
|
|
|
|
|
def test_from_save_pretrained(self): |
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", None) |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
sample = self.dummy_sample |
|
residual = 0.1 * sample |
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
scheduler.save_config(tmpdirname) |
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
new_scheduler.set_timesteps(num_inference_steps) |
|
timestep = scheduler.timesteps[0] |
|
|
|
sample = self.dummy_sample |
|
|
|
scaled_sample = scheduler.scale_model_input(sample, timestep) |
|
residual = 0.1 * scaled_sample |
|
|
|
new_scaled_sample = new_scheduler.scale_model_input(sample, timestep) |
|
new_residual = 0.1 * new_scaled_sample |
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample |
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
new_output = new_scheduler.step(new_residual, timestep, sample, **kwargs).prev_sample |
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" |
|
|
|
|
|
def test_step_shape(self): |
|
num_inference_steps = 10 |
|
|
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = self.scheduler_classes[0](**scheduler_config) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
timestep_0 = scheduler.timesteps[0] |
|
timestep_1 = scheduler.timesteps[1] |
|
|
|
sample = self.dummy_sample |
|
scaled_sample = scheduler.scale_model_input(sample, timestep_0) |
|
residual = 0.1 * scaled_sample |
|
|
|
output_0 = scheduler.step(residual, timestep_0, sample).prev_sample |
|
output_1 = scheduler.step(residual, timestep_1, sample).prev_sample |
|
|
|
self.assertEqual(output_0.shape, sample.shape) |
|
self.assertEqual(output_0.shape, output_1.shape) |
|
|
|
|
|
def test_scheduler_outputs_equivalence(self): |
|
def set_nan_tensor_to_zero(t): |
|
t[t != t] = 0 |
|
return t |
|
|
|
def recursive_check(tuple_object, dict_object): |
|
if isinstance(tuple_object, (List, Tuple)): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif isinstance(tuple_object, Dict): |
|
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): |
|
recursive_check(tuple_iterable_value, dict_iterable_value) |
|
elif tuple_object is None: |
|
return |
|
else: |
|
self.assertTrue( |
|
torch.allclose( |
|
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 |
|
), |
|
msg=( |
|
"Tuple and dict output are not equal. Difference:" |
|
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" |
|
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" |
|
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." |
|
), |
|
) |
|
|
|
kwargs = dict(self.forward_default_kwargs) |
|
num_inference_steps = kwargs.pop("num_inference_steps", 50) |
|
|
|
timestep = 0 |
|
|
|
for scheduler_class in self.scheduler_classes: |
|
scheduler_config = self.get_scheduler_config() |
|
scheduler = scheduler_class(**scheduler_config) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
timestep = scheduler.timesteps[0] |
|
|
|
sample = self.dummy_sample |
|
scaled_sample = scheduler.scale_model_input(sample, timestep) |
|
residual = 0.1 * scaled_sample |
|
|
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
outputs_dict = scheduler.step(residual, timestep, sample, **kwargs) |
|
|
|
scheduler.set_timesteps(num_inference_steps) |
|
|
|
scaled_sample = scheduler.scale_model_input(sample, timestep) |
|
residual = 0.1 * scaled_sample |
|
|
|
|
|
if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): |
|
kwargs["generator"] = torch.manual_seed(0) |
|
outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs) |
|
|
|
recursive_check(outputs_tuple, outputs_dict) |
|
|
|
@unittest.skip(reason="EDMEulerScheduler does not support beta schedules.") |
|
def test_trained_betas(self): |
|
pass |
|
|