|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import ( |
|
ControlNetModel, |
|
) |
|
from diffusers.utils.testing_utils import ( |
|
enable_full_determinism, |
|
require_torch_gpu, |
|
slow, |
|
) |
|
|
|
|
|
enable_full_determinism() |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class ControlNetModelSingleFileTests(unittest.TestCase): |
|
model_class = ControlNetModel |
|
ckpt_path = "https://huggingface.co/lllyasviel/ControlNet-v1-1/blob/main/control_v11p_sd15_canny.pth" |
|
repo_id = "lllyasviel/control_v11p_sd15_canny" |
|
|
|
def setUp(self): |
|
super().setUp() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def tearDown(self): |
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_single_file_components(self): |
|
model = self.model_class.from_pretrained(self.repo_id) |
|
model_single_file = self.model_class.from_single_file(self.ckpt_path) |
|
|
|
PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] |
|
for param_name, param_value in model_single_file.config.items(): |
|
if param_name in PARAMS_TO_IGNORE: |
|
continue |
|
assert ( |
|
model.config[param_name] == param_value |
|
), f"{param_name} differs between single file loading and pretrained loading" |
|
|
|
def test_single_file_arguments(self): |
|
model_default = self.model_class.from_single_file(self.ckpt_path) |
|
|
|
assert model_default.config.upcast_attention is False |
|
assert model_default.dtype == torch.float32 |
|
|
|
torch_dtype = torch.float16 |
|
upcast_attention = True |
|
|
|
model = self.model_class.from_single_file( |
|
self.ckpt_path, |
|
upcast_attention=upcast_attention, |
|
torch_dtype=torch_dtype, |
|
) |
|
assert model.config.upcast_attention == upcast_attention |
|
assert model.dtype == torch_dtype |
|
|