diffusers-sdxl-controlnet
/
tests
/single_file
/test_stable_diffusion_controlnet_img2img_single_file.py
import gc | |
import tempfile | |
import unittest | |
import torch | |
from diffusers import ControlNetModel, StableDiffusionControlNetPipeline | |
from diffusers.utils import load_image | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
numpy_cosine_similarity_distance, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from .single_file_testing_utils import ( | |
SDSingleFileTesterMixin, | |
download_diffusers_config, | |
download_original_config, | |
download_single_file_checkpoint, | |
) | |
enable_full_determinism() | |
class StableDiffusionControlNetPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): | |
pipeline_class = StableDiffusionControlNetPipeline | |
ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors" | |
original_config = ( | |
"https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" | |
) | |
repo_id = "runwayml/stable-diffusion-v1-5" | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
generator = torch.Generator(device=generator_device).manual_seed(seed) | |
init_image = load_image( | |
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
"/stable_diffusion_img2img/sketch-mountains-input.png" | |
) | |
control_image = load_image( | |
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" | |
).resize((512, 512)) | |
prompt = "bird" | |
inputs = { | |
"prompt": prompt, | |
"image": init_image, | |
"control_image": control_image, | |
"generator": generator, | |
"num_inference_steps": 3, | |
"strength": 0.75, | |
"guidance_scale": 7.5, | |
"output_type": "np", | |
} | |
return inputs | |
def test_single_file_format_inference_is_same_as_pretrained(self): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") | |
pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet) | |
pipe.unet.set_default_attn_processor() | |
pipe.enable_model_cpu_offload() | |
pipe_sf = self.pipeline_class.from_single_file( | |
self.ckpt_path, | |
controlnet=controlnet, | |
) | |
pipe_sf.unet.set_default_attn_processor() | |
pipe_sf.enable_model_cpu_offload() | |
inputs = self.get_inputs(torch_device) | |
output = pipe(**inputs).images[0] | |
inputs = self.get_inputs(torch_device) | |
output_sf = pipe_sf(**inputs).images[0] | |
max_diff = numpy_cosine_similarity_distance(output_sf.flatten(), output.flatten()) | |
assert max_diff < 1e-3 | |
def test_single_file_components(self): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") | |
pipe = self.pipeline_class.from_pretrained( | |
self.repo_id, variant="fp16", safety_checker=None, controlnet=controlnet | |
) | |
pipe_single_file = self.pipeline_class.from_single_file( | |
self.ckpt_path, | |
safety_checker=None, | |
controlnet=controlnet, | |
) | |
super()._compare_component_configs(pipe, pipe_single_file) | |
def test_single_file_components_local_files_only(self): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") | |
pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet) | |
with tempfile.TemporaryDirectory() as tmpdir: | |
ckpt_filename = self.ckpt_path.split("/")[-1] | |
local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir) | |
pipe_single_file = self.pipeline_class.from_single_file( | |
local_ckpt_path, controlnet=controlnet, safety_checker=None, local_files_only=True | |
) | |
super()._compare_component_configs(pipe, pipe_single_file) | |
def test_single_file_components_with_original_config(self): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", variant="fp16") | |
pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet) | |
pipe_single_file = self.pipeline_class.from_single_file( | |
self.ckpt_path, controlnet=controlnet, safety_checker=None, original_config=self.original_config | |
) | |
super()._compare_component_configs(pipe, pipe_single_file) | |
def test_single_file_components_with_original_config_local_files_only(self): | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16, variant="fp16" | |
) | |
pipe = self.pipeline_class.from_pretrained( | |
self.repo_id, | |
controlnet=controlnet, | |
) | |
with tempfile.TemporaryDirectory() as tmpdir: | |
ckpt_filename = self.ckpt_path.split("/")[-1] | |
local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir) | |
local_original_config = download_original_config(self.original_config, tmpdir) | |
pipe_single_file = self.pipeline_class.from_single_file( | |
local_ckpt_path, | |
original_config=local_original_config, | |
controlnet=controlnet, | |
safety_checker=None, | |
local_files_only=True, | |
) | |
super()._compare_component_configs(pipe, pipe_single_file) | |
def test_single_file_components_with_diffusers_config(self): | |
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", variant="fp16") | |
pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet) | |
pipe_single_file = self.pipeline_class.from_single_file( | |
self.ckpt_path, controlnet=controlnet, safety_checker=None, original_config=self.original_config | |
) | |
super()._compare_component_configs(pipe, pipe_single_file) | |
def test_single_file_components_with_diffusers_config_local_files_only(self): | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16, variant="fp16" | |
) | |
pipe = self.pipeline_class.from_pretrained( | |
self.repo_id, | |
controlnet=controlnet, | |
) | |
with tempfile.TemporaryDirectory() as tmpdir: | |
ckpt_filename = self.ckpt_path.split("/")[-1] | |
local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir) | |
local_diffusers_config = download_diffusers_config(self.repo_id, tmpdir) | |
pipe_single_file = self.pipeline_class.from_single_file( | |
local_ckpt_path, | |
config=local_diffusers_config, | |
safety_checker=None, | |
controlnet=controlnet, | |
local_files_only=True, | |
) | |
super()._compare_component_configs(pipe, pipe_single_file) | |