# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from dataclasses import dataclass from typing import Dict, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...utils import BaseOutput, logging from ..attention_processor import Attention, AttentionProcessor, AttnProcessor from ..embeddings import TimestepEmbedding, Timesteps from ..modeling_utils import ModelMixin logger = logging.get_logger(__name__) # pylint: disable=invalid-name @dataclass class Kandinsky3UNetOutput(BaseOutput): sample: torch.Tensor = None class Kandinsky3EncoderProj(nn.Module): def __init__(self, encoder_hid_dim, cross_attention_dim): super().__init__() self.projection_linear = nn.Linear(encoder_hid_dim, cross_attention_dim, bias=False) self.projection_norm = nn.LayerNorm(cross_attention_dim) def forward(self, x): x = self.projection_linear(x) x = self.projection_norm(x) return x class Kandinsky3UNet(ModelMixin, ConfigMixin): @register_to_config def __init__( self, in_channels: int = 4, time_embedding_dim: int = 1536, groups: int = 32, attention_head_dim: int = 64, layers_per_block: Union[int, Tuple[int]] = 3, block_out_channels: Tuple[int] = (384, 768, 1536, 3072), cross_attention_dim: Union[int, Tuple[int]] = 4096, encoder_hid_dim: int = 4096, ): super().__init__() # TOOD(Yiyi): Give better name and put into config for the following 4 parameters expansion_ratio = 4 compression_ratio = 2 add_cross_attention = (False, True, True, True) add_self_attention = (False, True, True, True) out_channels = in_channels init_channels = block_out_channels[0] // 2 self.time_proj = Timesteps(init_channels, flip_sin_to_cos=False, downscale_freq_shift=1) self.time_embedding = TimestepEmbedding( init_channels, time_embedding_dim, ) self.add_time_condition = Kandinsky3AttentionPooling( time_embedding_dim, cross_attention_dim, attention_head_dim ) self.conv_in = nn.Conv2d(in_channels, init_channels, kernel_size=3, padding=1) self.encoder_hid_proj = Kandinsky3EncoderProj(encoder_hid_dim, cross_attention_dim) hidden_dims = [init_channels] + list(block_out_channels) in_out_dims = list(zip(hidden_dims[:-1], hidden_dims[1:])) text_dims = [cross_attention_dim if is_exist else None for is_exist in add_cross_attention] num_blocks = len(block_out_channels) * [layers_per_block] layer_params = [num_blocks, text_dims, add_self_attention] rev_layer_params = map(reversed, layer_params) cat_dims = [] self.num_levels = len(in_out_dims) self.down_blocks = nn.ModuleList([]) for level, ((in_dim, out_dim), res_block_num, text_dim, self_attention) in enumerate( zip(in_out_dims, *layer_params) ): down_sample = level != (self.num_levels - 1) cat_dims.append(out_dim if level != (self.num_levels - 1) else 0) self.down_blocks.append( Kandinsky3DownSampleBlock( in_dim, out_dim, time_embedding_dim, text_dim, res_block_num, groups, attention_head_dim, expansion_ratio, compression_ratio, down_sample, self_attention, ) ) self.up_blocks = nn.ModuleList([]) for level, ((out_dim, in_dim), res_block_num, text_dim, self_attention) in enumerate( zip(reversed(in_out_dims), *rev_layer_params) ): up_sample = level != 0 self.up_blocks.append( Kandinsky3UpSampleBlock( in_dim, cat_dims.pop(), out_dim, time_embedding_dim, text_dim, res_block_num, groups, attention_head_dim, expansion_ratio, compression_ratio, up_sample, self_attention, ) ) self.conv_norm_out = nn.GroupNorm(groups, init_channels) self.conv_act_out = nn.SiLU() self.conv_out = nn.Conv2d(init_channels, out_channels, kernel_size=3, padding=1) @property def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "set_processor"): processors[f"{name}.processor"] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def set_default_attn_processor(self): """ Disables custom attention processors and sets the default attention implementation. """ self.set_attn_processor(AttnProcessor()) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward(self, sample, timestep, encoder_hidden_states=None, encoder_attention_mask=None, return_dict=True): if encoder_attention_mask is not None: encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0 encoder_attention_mask = encoder_attention_mask.unsqueeze(1) if not torch.is_tensor(timestep): dtype = torch.float32 if isinstance(timestep, float) else torch.int32 timestep = torch.tensor([timestep], dtype=dtype, device=sample.device) elif len(timestep.shape) == 0: timestep = timestep[None].to(sample.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = timestep.expand(sample.shape[0]) time_embed_input = self.time_proj(timestep).to(sample.dtype) time_embed = self.time_embedding(time_embed_input) encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states) if encoder_hidden_states is not None: time_embed = self.add_time_condition(time_embed, encoder_hidden_states, encoder_attention_mask) hidden_states = [] sample = self.conv_in(sample) for level, down_sample in enumerate(self.down_blocks): sample = down_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask) if level != self.num_levels - 1: hidden_states.append(sample) for level, up_sample in enumerate(self.up_blocks): if level != 0: sample = torch.cat([sample, hidden_states.pop()], dim=1) sample = up_sample(sample, time_embed, encoder_hidden_states, encoder_attention_mask) sample = self.conv_norm_out(sample) sample = self.conv_act_out(sample) sample = self.conv_out(sample) if not return_dict: return (sample,) return Kandinsky3UNetOutput(sample=sample) class Kandinsky3UpSampleBlock(nn.Module): def __init__( self, in_channels, cat_dim, out_channels, time_embed_dim, context_dim=None, num_blocks=3, groups=32, head_dim=64, expansion_ratio=4, compression_ratio=2, up_sample=True, self_attention=True, ): super().__init__() up_resolutions = [[None, True if up_sample else None, None, None]] + [[None] * 4] * (num_blocks - 1) hidden_channels = ( [(in_channels + cat_dim, in_channels)] + [(in_channels, in_channels)] * (num_blocks - 2) + [(in_channels, out_channels)] ) attentions = [] resnets_in = [] resnets_out = [] self.self_attention = self_attention self.context_dim = context_dim if self_attention: attentions.append( Kandinsky3AttentionBlock(out_channels, time_embed_dim, None, groups, head_dim, expansion_ratio) ) else: attentions.append(nn.Identity()) for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions): resnets_in.append( Kandinsky3ResNetBlock(in_channel, in_channel, time_embed_dim, groups, compression_ratio, up_resolution) ) if context_dim is not None: attentions.append( Kandinsky3AttentionBlock( in_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio ) ) else: attentions.append(nn.Identity()) resnets_out.append( Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio) ) self.attentions = nn.ModuleList(attentions) self.resnets_in = nn.ModuleList(resnets_in) self.resnets_out = nn.ModuleList(resnets_out) def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out): x = resnet_in(x, time_embed) if self.context_dim is not None: x = attention(x, time_embed, context, context_mask, image_mask) x = resnet_out(x, time_embed) if self.self_attention: x = self.attentions[0](x, time_embed, image_mask=image_mask) return x class Kandinsky3DownSampleBlock(nn.Module): def __init__( self, in_channels, out_channels, time_embed_dim, context_dim=None, num_blocks=3, groups=32, head_dim=64, expansion_ratio=4, compression_ratio=2, down_sample=True, self_attention=True, ): super().__init__() attentions = [] resnets_in = [] resnets_out = [] self.self_attention = self_attention self.context_dim = context_dim if self_attention: attentions.append( Kandinsky3AttentionBlock(in_channels, time_embed_dim, None, groups, head_dim, expansion_ratio) ) else: attentions.append(nn.Identity()) up_resolutions = [[None] * 4] * (num_blocks - 1) + [[None, None, False if down_sample else None, None]] hidden_channels = [(in_channels, out_channels)] + [(out_channels, out_channels)] * (num_blocks - 1) for (in_channel, out_channel), up_resolution in zip(hidden_channels, up_resolutions): resnets_in.append( Kandinsky3ResNetBlock(in_channel, out_channel, time_embed_dim, groups, compression_ratio) ) if context_dim is not None: attentions.append( Kandinsky3AttentionBlock( out_channel, time_embed_dim, context_dim, groups, head_dim, expansion_ratio ) ) else: attentions.append(nn.Identity()) resnets_out.append( Kandinsky3ResNetBlock( out_channel, out_channel, time_embed_dim, groups, compression_ratio, up_resolution ) ) self.attentions = nn.ModuleList(attentions) self.resnets_in = nn.ModuleList(resnets_in) self.resnets_out = nn.ModuleList(resnets_out) def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): if self.self_attention: x = self.attentions[0](x, time_embed, image_mask=image_mask) for attention, resnet_in, resnet_out in zip(self.attentions[1:], self.resnets_in, self.resnets_out): x = resnet_in(x, time_embed) if self.context_dim is not None: x = attention(x, time_embed, context, context_mask, image_mask) x = resnet_out(x, time_embed) return x class Kandinsky3ConditionalGroupNorm(nn.Module): def __init__(self, groups, normalized_shape, context_dim): super().__init__() self.norm = nn.GroupNorm(groups, normalized_shape, affine=False) self.context_mlp = nn.Sequential(nn.SiLU(), nn.Linear(context_dim, 2 * normalized_shape)) self.context_mlp[1].weight.data.zero_() self.context_mlp[1].bias.data.zero_() def forward(self, x, context): context = self.context_mlp(context) for _ in range(len(x.shape[2:])): context = context.unsqueeze(-1) scale, shift = context.chunk(2, dim=1) x = self.norm(x) * (scale + 1.0) + shift return x class Kandinsky3Block(nn.Module): def __init__(self, in_channels, out_channels, time_embed_dim, kernel_size=3, norm_groups=32, up_resolution=None): super().__init__() self.group_norm = Kandinsky3ConditionalGroupNorm(norm_groups, in_channels, time_embed_dim) self.activation = nn.SiLU() if up_resolution is not None and up_resolution: self.up_sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2) else: self.up_sample = nn.Identity() padding = int(kernel_size > 1) self.projection = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=padding) if up_resolution is not None and not up_resolution: self.down_sample = nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2) else: self.down_sample = nn.Identity() def forward(self, x, time_embed): x = self.group_norm(x, time_embed) x = self.activation(x) x = self.up_sample(x) x = self.projection(x) x = self.down_sample(x) return x class Kandinsky3ResNetBlock(nn.Module): def __init__( self, in_channels, out_channels, time_embed_dim, norm_groups=32, compression_ratio=2, up_resolutions=4 * [None] ): super().__init__() kernel_sizes = [1, 3, 3, 1] hidden_channel = max(in_channels, out_channels) // compression_ratio hidden_channels = ( [(in_channels, hidden_channel)] + [(hidden_channel, hidden_channel)] * 2 + [(hidden_channel, out_channels)] ) self.resnet_blocks = nn.ModuleList( [ Kandinsky3Block(in_channel, out_channel, time_embed_dim, kernel_size, norm_groups, up_resolution) for (in_channel, out_channel), kernel_size, up_resolution in zip( hidden_channels, kernel_sizes, up_resolutions ) ] ) self.shortcut_up_sample = ( nn.ConvTranspose2d(in_channels, in_channels, kernel_size=2, stride=2) if True in up_resolutions else nn.Identity() ) self.shortcut_projection = ( nn.Conv2d(in_channels, out_channels, kernel_size=1) if in_channels != out_channels else nn.Identity() ) self.shortcut_down_sample = ( nn.Conv2d(out_channels, out_channels, kernel_size=2, stride=2) if False in up_resolutions else nn.Identity() ) def forward(self, x, time_embed): out = x for resnet_block in self.resnet_blocks: out = resnet_block(out, time_embed) x = self.shortcut_up_sample(x) x = self.shortcut_projection(x) x = self.shortcut_down_sample(x) x = x + out return x class Kandinsky3AttentionPooling(nn.Module): def __init__(self, num_channels, context_dim, head_dim=64): super().__init__() self.attention = Attention( context_dim, context_dim, dim_head=head_dim, out_dim=num_channels, out_bias=False, ) def forward(self, x, context, context_mask=None): context_mask = context_mask.to(dtype=context.dtype) context = self.attention(context.mean(dim=1, keepdim=True), context, context_mask) return x + context.squeeze(1) class Kandinsky3AttentionBlock(nn.Module): def __init__(self, num_channels, time_embed_dim, context_dim=None, norm_groups=32, head_dim=64, expansion_ratio=4): super().__init__() self.in_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim) self.attention = Attention( num_channels, context_dim or num_channels, dim_head=head_dim, out_dim=num_channels, out_bias=False, ) hidden_channels = expansion_ratio * num_channels self.out_norm = Kandinsky3ConditionalGroupNorm(norm_groups, num_channels, time_embed_dim) self.feed_forward = nn.Sequential( nn.Conv2d(num_channels, hidden_channels, kernel_size=1, bias=False), nn.SiLU(), nn.Conv2d(hidden_channels, num_channels, kernel_size=1, bias=False), ) def forward(self, x, time_embed, context=None, context_mask=None, image_mask=None): height, width = x.shape[-2:] out = self.in_norm(x, time_embed) out = out.reshape(x.shape[0], -1, height * width).permute(0, 2, 1) context = context if context is not None else out if context_mask is not None: context_mask = context_mask.to(dtype=context.dtype) out = self.attention(out, context, context_mask) out = out.permute(0, 2, 1).unsqueeze(-1).reshape(out.shape[0], -1, height, width) x = x + out out = self.out_norm(x, time_embed) out = self.feed_forward(out) x = x + out return x