# Copyright 2024 Microsoft and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ....configuration_utils import ConfigMixin, register_to_config from ....models import ModelMixin, Transformer2DModel, VQModel from ....schedulers import VQDiffusionScheduler from ....utils import logging from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput logger = logging.get_logger(__name__) # pylint: disable=invalid-name class LearnedClassifierFreeSamplingEmbeddings(ModelMixin, ConfigMixin): """ Utility class for storing learned text embeddings for classifier free sampling """ @register_to_config def __init__(self, learnable: bool, hidden_size: Optional[int] = None, length: Optional[int] = None): super().__init__() self.learnable = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" embeddings = torch.zeros(length, hidden_size) else: embeddings = None self.embeddings = torch.nn.Parameter(embeddings) class VQDiffusionPipeline(DiffusionPipeline): r""" Pipeline for text-to-image generation using VQ Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vqvae ([`VQModel`]): Vector Quantized Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. text_encoder ([`~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32)). tokenizer ([`~transformers.CLIPTokenizer`]): A `CLIPTokenizer` to tokenize text. transformer ([`Transformer2DModel`]): A conditional `Transformer2DModel` to denoise the encoded image latents. scheduler ([`VQDiffusionScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ vqvae: VQModel text_encoder: CLIPTextModel tokenizer: CLIPTokenizer transformer: Transformer2DModel learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings scheduler: VQDiffusionScheduler def __init__( self, vqvae: VQModel, text_encoder: CLIPTextModel, tokenizer: CLIPTokenizer, transformer: Transformer2DModel, scheduler: VQDiffusionScheduler, learned_classifier_free_sampling_embeddings: LearnedClassifierFreeSamplingEmbeddings, ): super().__init__() self.register_modules( vqvae=vqvae, transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, ) def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance): batch_size = len(prompt) if isinstance(prompt, list) else 1 # get prompt text embeddings text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, return_tensors="pt", ) text_input_ids = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] prompt_embeds = self.text_encoder(text_input_ids.to(self.device))[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 prompt_embeds = prompt_embeds / prompt_embeds.norm(dim=-1, keepdim=True) # duplicate text embeddings for each generation per prompt prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: negative_prompt_embeds = self.learned_classifier_free_sampling_embeddings.embeddings negative_prompt_embeds = negative_prompt_embeds.unsqueeze(0).repeat(batch_size, 1, 1) else: uncond_tokens = [""] * batch_size max_length = text_input_ids.shape[-1] uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # See comment for normalizing text embeddings negative_prompt_embeds = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1, keepdim=True) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds @torch.no_grad() def __call__( self, prompt: Union[str, List[str]], num_inference_steps: int = 100, guidance_scale: float = 5.0, truncation_rate: float = 1.0, num_images_per_prompt: int = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, callback_steps: int = 1, ) -> Union[ImagePipelineOutput, Tuple]: """ The call function to the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide image generation. num_inference_steps (`int`, *optional*, defaults to 100): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. truncation_rate (`float`, *optional*, defaults to 1.0 (equivalent to no truncation)): Used to "truncate" the predicted classes for x_0 such that the cumulative probability for a pixel is at most `truncation_rate`. The lowest probabilities that would increase the cumulative probability above `truncation_rate` are set to zero. num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor` of shape (batch), *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Must be valid embedding indices.If not provided, a latents tensor will be generated of completely masked latent pixels. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that calls every `callback_steps` steps during inference. The function is called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function is called. If not specified, the callback is called at every step. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ if isinstance(prompt, str): batch_size = 1 elif isinstance(prompt, list): batch_size = len(prompt) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") batch_size = batch_size * num_images_per_prompt do_classifier_free_guidance = guidance_scale > 1.0 prompt_embeds = self._encode_prompt(prompt, num_images_per_prompt, do_classifier_free_guidance) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(callback_steps)}." ) # get the initial completely masked latents unless the user supplied it latents_shape = (batch_size, self.transformer.num_latent_pixels) if latents is None: mask_class = self.transformer.num_vector_embeds - 1 latents = torch.full(latents_shape, mask_class).to(self.device) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( "Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0," f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) latents = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(num_inference_steps, device=self.device) timesteps_tensor = self.scheduler.timesteps.to(self.device) sample = latents for i, t in enumerate(self.progress_bar(timesteps_tensor)): # expand the sample if we are doing classifier free guidance latent_model_input = torch.cat([sample] * 2) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` model_output = self.transformer(latent_model_input, encoder_hidden_states=prompt_embeds, timestep=t).sample if do_classifier_free_guidance: model_output_uncond, model_output_text = model_output.chunk(2) model_output = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(model_output, dim=1, keepdim=True) model_output = self.truncate(model_output, truncation_rate) # remove `log(0)`'s (`-inf`s) model_output = model_output.clamp(-70) # compute the previous noisy sample x_t -> x_t-1 sample = self.scheduler.step(model_output, timestep=t, sample=sample, generator=generator).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(i, t, sample) embedding_channels = self.vqvae.config.vq_embed_dim embeddings_shape = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) embeddings = self.vqvae.quantize.get_codebook_entry(sample, shape=embeddings_shape) image = self.vqvae.decode(embeddings, force_not_quantize=True).sample image = (image / 2 + 0.5).clamp(0, 1) image = image.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": image = self.numpy_to_pil(image) if not return_dict: return (image,) return ImagePipelineOutput(images=image) def truncate(self, log_p_x_0: torch.Tensor, truncation_rate: float) -> torch.Tensor: """ Truncates `log_p_x_0` such that for each column vector, the total cumulative probability is `truncation_rate` The lowest probabilities that would increase the cumulative probability above `truncation_rate` are set to zero. """ sorted_log_p_x_0, indices = torch.sort(log_p_x_0, 1, descending=True) sorted_p_x_0 = torch.exp(sorted_log_p_x_0) keep_mask = sorted_p_x_0.cumsum(dim=1) < truncation_rate # Ensure that at least the largest probability is not zeroed out all_true = torch.full_like(keep_mask[:, 0:1, :], True) keep_mask = torch.cat((all_true, keep_mask), dim=1) keep_mask = keep_mask[:, :-1, :] keep_mask = keep_mask.gather(1, indices.argsort(1)) rv = log_p_x_0.clone() rv[~keep_mask] = -torch.inf # -inf = log(0) return rv