# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from dataclasses import dataclass from typing import Callable, Dict, List, Optional, Union import numpy as np import PIL.Image import torch from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from ...image_processor import PipelineImageInput from ...models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel from ...schedulers import EulerDiscreteScheduler from ...utils import BaseOutput, logging, replace_example_docstring from ...utils.torch_utils import is_compiled_module, randn_tensor from ...video_processor import VideoProcessor from ..pipeline_utils import DiffusionPipeline logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> from diffusers import StableVideoDiffusionPipeline >>> from diffusers.utils import load_image, export_to_video >>> pipe = StableVideoDiffusionPipeline.from_pretrained( ... "stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch.float16, variant="fp16" ... ) >>> pipe.to("cuda") >>> image = load_image( ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd-docstring-example.jpeg" ... ) >>> image = image.resize((1024, 576)) >>> frames = pipe(image, num_frames=25, decode_chunk_size=8).frames[0] >>> export_to_video(frames, "generated.mp4", fps=7) ``` """ def _append_dims(x, target_dims): """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" dims_to_append = target_dims - x.ndim if dims_to_append < 0: raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less") return x[(...,) + (None,) * dims_to_append] # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps def retrieve_timesteps( scheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, **kwargs, ): """ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. Args: scheduler (`SchedulerMixin`): The scheduler to get timesteps from. num_inference_steps (`int`): The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` must be `None`. device (`str` or `torch.device`, *optional*): The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. timesteps (`List[int]`, *optional*): Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, `num_inference_steps` and `sigmas` must be `None`. sigmas (`List[float]`, *optional*): Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, `num_inference_steps` and `timesteps` must be `None`. Returns: `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the second element is the number of inference steps. """ if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") if timesteps is not None: accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accepts_timesteps: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" timestep schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) elif sigmas is not None: accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) if not accept_sigmas: raise ValueError( f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" f" sigmas schedules. Please check whether you are using the correct scheduler." ) scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) else: scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) timesteps = scheduler.timesteps return timesteps, num_inference_steps @dataclass class StableVideoDiffusionPipelineOutput(BaseOutput): r""" Output class for Stable Video Diffusion pipeline. Args: frames (`[List[List[PIL.Image.Image]]`, `np.ndarray`, `torch.Tensor`]): List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size, num_frames, height, width, num_channels)`. """ frames: Union[List[List[PIL.Image.Image]], np.ndarray, torch.Tensor] class StableVideoDiffusionPipeline(DiffusionPipeline): r""" Pipeline to generate video from an input image using Stable Video Diffusion. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Args: vae ([`AutoencoderKLTemporalDecoder`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. image_encoder ([`~transformers.CLIPVisionModelWithProjection`]): Frozen CLIP image-encoder ([laion/CLIP-ViT-H-14-laion2B-s32B-b79K](https://huggingface.co/laion/CLIP-ViT-H-14-laion2B-s32B-b79K)). unet ([`UNetSpatioTemporalConditionModel`]): A `UNetSpatioTemporalConditionModel` to denoise the encoded image latents. scheduler ([`EulerDiscreteScheduler`]): A scheduler to be used in combination with `unet` to denoise the encoded image latents. feature_extractor ([`~transformers.CLIPImageProcessor`]): A `CLIPImageProcessor` to extract features from generated images. """ model_cpu_offload_seq = "image_encoder->unet->vae" _callback_tensor_inputs = ["latents"] def __init__( self, vae: AutoencoderKLTemporalDecoder, image_encoder: CLIPVisionModelWithProjection, unet: UNetSpatioTemporalConditionModel, scheduler: EulerDiscreteScheduler, feature_extractor: CLIPImageProcessor, ): super().__init__() self.register_modules( vae=vae, image_encoder=image_encoder, unet=unet, scheduler=scheduler, feature_extractor=feature_extractor, ) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.video_processor = VideoProcessor(do_resize=True, vae_scale_factor=self.vae_scale_factor) def _encode_image( self, image: PipelineImageInput, device: Union[str, torch.device], num_videos_per_prompt: int, do_classifier_free_guidance: bool, ) -> torch.Tensor: dtype = next(self.image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = self.video_processor.pil_to_numpy(image) image = self.video_processor.numpy_to_pt(image) # We normalize the image before resizing to match with the original implementation. # Then we unnormalize it after resizing. image = image * 2.0 - 1.0 image = _resize_with_antialiasing(image, (224, 224)) image = (image + 1.0) / 2.0 # Normalize the image with for CLIP input image = self.feature_extractor( images=image, do_normalize=True, do_center_crop=False, do_resize=False, do_rescale=False, return_tensors="pt", ).pixel_values image = image.to(device=device, dtype=dtype) image_embeddings = self.image_encoder(image).image_embeds image_embeddings = image_embeddings.unsqueeze(1) # duplicate image embeddings for each generation per prompt, using mps friendly method bs_embed, seq_len, _ = image_embeddings.shape image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) if do_classifier_free_guidance: negative_image_embeddings = torch.zeros_like(image_embeddings) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_embeddings = torch.cat([negative_image_embeddings, image_embeddings]) return image_embeddings def _encode_vae_image( self, image: torch.Tensor, device: Union[str, torch.device], num_videos_per_prompt: int, do_classifier_free_guidance: bool, ): image = image.to(device=device) image_latents = self.vae.encode(image).latent_dist.mode() # duplicate image_latents for each generation per prompt, using mps friendly method image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1) if do_classifier_free_guidance: negative_image_latents = torch.zeros_like(image_latents) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes image_latents = torch.cat([negative_image_latents, image_latents]) return image_latents def _get_add_time_ids( self, fps: int, motion_bucket_id: int, noise_aug_strength: float, dtype: torch.dtype, batch_size: int, num_videos_per_prompt: int, do_classifier_free_guidance: bool, ): add_time_ids = [fps, motion_bucket_id, noise_aug_strength] passed_add_embed_dim = self.unet.config.addition_time_embed_dim * len(add_time_ids) expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features if expected_add_embed_dim != passed_add_embed_dim: raise ValueError( f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." ) add_time_ids = torch.tensor([add_time_ids], dtype=dtype) add_time_ids = add_time_ids.repeat(batch_size * num_videos_per_prompt, 1) if do_classifier_free_guidance: add_time_ids = torch.cat([add_time_ids, add_time_ids]) return add_time_ids def decode_latents(self, latents: torch.Tensor, num_frames: int, decode_chunk_size: int = 14): # [batch, frames, channels, height, width] -> [batch*frames, channels, height, width] latents = latents.flatten(0, 1) latents = 1 / self.vae.config.scaling_factor * latents forward_vae_fn = self.vae._orig_mod.forward if is_compiled_module(self.vae) else self.vae.forward accepts_num_frames = "num_frames" in set(inspect.signature(forward_vae_fn).parameters.keys()) # decode decode_chunk_size frames at a time to avoid OOM frames = [] for i in range(0, latents.shape[0], decode_chunk_size): num_frames_in = latents[i : i + decode_chunk_size].shape[0] decode_kwargs = {} if accepts_num_frames: # we only pass num_frames_in if it's expected decode_kwargs["num_frames"] = num_frames_in frame = self.vae.decode(latents[i : i + decode_chunk_size], **decode_kwargs).sample frames.append(frame) frames = torch.cat(frames, dim=0) # [batch*frames, channels, height, width] -> [batch, channels, frames, height, width] frames = frames.reshape(-1, num_frames, *frames.shape[1:]).permute(0, 2, 1, 3, 4) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 frames = frames.float() return frames def check_inputs(self, image, height, width): if ( not isinstance(image, torch.Tensor) and not isinstance(image, PIL.Image.Image) and not isinstance(image, list) ): raise ValueError( "`image` has to be of type `torch.Tensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" f" {type(image)}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") def prepare_latents( self, batch_size: int, num_frames: int, num_channels_latents: int, height: int, width: int, dtype: torch.dtype, device: Union[str, torch.device], generator: torch.Generator, latents: Optional[torch.Tensor] = None, ): shape = ( batch_size, num_frames, num_channels_latents // 2, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): if isinstance(self.guidance_scale, (int, float)): return self.guidance_scale > 1 return self.guidance_scale.max() > 1 @property def num_timesteps(self): return self._num_timesteps @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor], height: int = 576, width: int = 1024, num_frames: Optional[int] = None, num_inference_steps: int = 25, sigmas: Optional[List[float]] = None, min_guidance_scale: float = 1.0, max_guidance_scale: float = 3.0, fps: int = 7, motion_bucket_id: int = 127, noise_aug_strength: float = 0.02, decode_chunk_size: Optional[int] = None, num_videos_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], return_dict: bool = True, ): r""" The call function to the pipeline for generation. Args: image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`): Image(s) to guide image generation. If you provide a tensor, the expected value range is between `[0, 1]`. height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The height in pixels of the generated image. width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): The width in pixels of the generated image. num_frames (`int`, *optional*): The number of video frames to generate. Defaults to `self.unet.config.num_frames` (14 for `stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`). num_inference_steps (`int`, *optional*, defaults to 25): The number of denoising steps. More denoising steps usually lead to a higher quality video at the expense of slower inference. This parameter is modulated by `strength`. sigmas (`List[float]`, *optional*): Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed will be used. min_guidance_scale (`float`, *optional*, defaults to 1.0): The minimum guidance scale. Used for the classifier free guidance with first frame. max_guidance_scale (`float`, *optional*, defaults to 3.0): The maximum guidance scale. Used for the classifier free guidance with last frame. fps (`int`, *optional*, defaults to 7): Frames per second. The rate at which the generated images shall be exported to a video after generation. Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training. motion_bucket_id (`int`, *optional*, defaults to 127): Used for conditioning the amount of motion for the generation. The higher the number the more motion will be in the video. noise_aug_strength (`float`, *optional*, defaults to 0.02): The amount of noise added to the init image, the higher it is the less the video will look like the init image. Increase it for more motion. decode_chunk_size (`int`, *optional*): The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the expense of more memory usage. By default, the decoder decodes all frames at once for maximal quality. For lower memory usage, reduce `decode_chunk_size`. num_videos_per_prompt (`int`, *optional*, defaults to 1): The number of videos to generate per prompt. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.Tensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `pil`, `np` or `pt`. callback_on_step_end (`Callable`, *optional*): A function that is called at the end of each denoising step during inference. The function is called with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by `callback_on_step_end_tensor_inputs`. callback_on_step_end_tensor_inputs (`List`, *optional*): The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the `._callback_tensor_inputs` attribute of your pipeline class. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. Examples: Returns: [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is returned, otherwise a `tuple` of (`List[List[PIL.Image.Image]]` or `np.ndarray` or `torch.Tensor`) is returned. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor num_frames = num_frames if num_frames is not None else self.unet.config.num_frames decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames # 1. Check inputs. Raise error if not correct self.check_inputs(image, height, width) # 2. Define call parameters if isinstance(image, PIL.Image.Image): batch_size = 1 elif isinstance(image, list): batch_size = len(image) else: batch_size = image.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. self._guidance_scale = max_guidance_scale # 3. Encode input image image_embeddings = self._encode_image(image, device, num_videos_per_prompt, self.do_classifier_free_guidance) # NOTE: Stable Video Diffusion was conditioned on fps - 1, which is why it is reduced here. # See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188 fps = fps - 1 # 4. Encode input image using VAE image = self.video_processor.preprocess(image, height=height, width=width).to(device) noise = randn_tensor(image.shape, generator=generator, device=device, dtype=image.dtype) image = image + noise_aug_strength * noise needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast if needs_upcasting: self.vae.to(dtype=torch.float32) image_latents = self._encode_vae_image( image, device=device, num_videos_per_prompt=num_videos_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, ) image_latents = image_latents.to(image_embeddings.dtype) # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) # Repeat the image latents for each frame so we can concatenate them with the noise # image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width] image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1) # 5. Get Added Time IDs added_time_ids = self._get_add_time_ids( fps, motion_bucket_id, noise_aug_strength, image_embeddings.dtype, batch_size, num_videos_per_prompt, self.do_classifier_free_guidance, ) added_time_ids = added_time_ids.to(device) # 6. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, None, sigmas) # 7. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_videos_per_prompt, num_frames, num_channels_latents, height, width, image_embeddings.dtype, device, generator, latents, ) # 8. Prepare guidance scale guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0) guidance_scale = guidance_scale.to(device, latents.dtype) guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1) guidance_scale = _append_dims(guidance_scale, latents.ndim) self._guidance_scale = guidance_scale # 9. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # Concatenate image_latents over channels dimension latent_model_input = torch.cat([latent_model_input, image_latents], dim=2) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=image_embeddings, added_time_ids=added_time_ids, return_dict=False, )[0] # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents).prev_sample if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if not output_type == "latent": # cast back to fp16 if needed if needs_upcasting: self.vae.to(dtype=torch.float16) frames = self.decode_latents(latents, num_frames, decode_chunk_size) frames = self.video_processor.postprocess_video(video=frames, output_type=output_type) else: frames = latents self.maybe_free_model_hooks() if not return_dict: return frames return StableVideoDiffusionPipelineOutput(frames=frames) # resizing utils # TODO: clean up later def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True): h, w = input.shape[-2:] factors = (h / size[0], w / size[1]) # First, we have to determine sigma # Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171 sigmas = ( max((factors[0] - 1.0) / 2.0, 0.001), max((factors[1] - 1.0) / 2.0, 0.001), ) # Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma # https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206 # But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3)) # Make sure it is odd if (ks[0] % 2) == 0: ks = ks[0] + 1, ks[1] if (ks[1] % 2) == 0: ks = ks[0], ks[1] + 1 input = _gaussian_blur2d(input, ks, sigmas) output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners) return output def _compute_padding(kernel_size): """Compute padding tuple.""" # 4 or 6 ints: (padding_left, padding_right,padding_top,padding_bottom) # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad if len(kernel_size) < 2: raise AssertionError(kernel_size) computed = [k - 1 for k in kernel_size] # for even kernels we need to do asymmetric padding :( out_padding = 2 * len(kernel_size) * [0] for i in range(len(kernel_size)): computed_tmp = computed[-(i + 1)] pad_front = computed_tmp // 2 pad_rear = computed_tmp - pad_front out_padding[2 * i + 0] = pad_front out_padding[2 * i + 1] = pad_rear return out_padding def _filter2d(input, kernel): # prepare kernel b, c, h, w = input.shape tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype) tmp_kernel = tmp_kernel.expand(-1, c, -1, -1) height, width = tmp_kernel.shape[-2:] padding_shape: List[int] = _compute_padding([height, width]) input = torch.nn.functional.pad(input, padding_shape, mode="reflect") # kernel and input tensor reshape to align element-wise or batch-wise params tmp_kernel = tmp_kernel.reshape(-1, 1, height, width) input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1)) # convolve the tensor with the kernel. output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1) out = output.view(b, c, h, w) return out def _gaussian(window_size: int, sigma): if isinstance(sigma, float): sigma = torch.tensor([[sigma]]) batch_size = sigma.shape[0] x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1) if window_size % 2 == 0: x = x + 0.5 gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0))) return gauss / gauss.sum(-1, keepdim=True) def _gaussian_blur2d(input, kernel_size, sigma): if isinstance(sigma, tuple): sigma = torch.tensor([sigma], dtype=input.dtype) else: sigma = sigma.to(dtype=input.dtype) ky, kx = int(kernel_size[0]), int(kernel_size[1]) bs = sigma.shape[0] kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1)) kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1)) out_x = _filter2d(input, kernel_x[..., None, :]) out = _filter2d(out_x, kernel_y[..., None]) return out