# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import UNet1DModel from diffusers.utils.testing_utils import ( backend_manual_seed, floats_tensor, slow, torch_device, ) from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin class UNet1DModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = UNet1DModel main_input_name = "sample" @property def dummy_input(self): batch_size = 4 num_features = 14 seq_len = 16 noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device) time_step = torch.tensor([10] * batch_size).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (4, 14, 16) @property def output_shape(self): return (4, 14, 16) def test_ema_training(self): pass def test_training(self): pass def test_determinism(self): super().test_determinism() def test_outputs_equivalence(self): super().test_outputs_equivalence() def test_from_save_pretrained(self): super().test_from_save_pretrained() def test_from_save_pretrained_variant(self): super().test_from_save_pretrained_variant() def test_model_from_pretrained(self): super().test_model_from_pretrained() def test_output(self): super().test_output() def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (8, 8, 16, 16), "in_channels": 14, "out_channels": 14, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1.0, "out_block_type": "OutConv1DBlock", "mid_block_type": "MidResTemporalBlock1D", "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D"), "act_fn": "swish", } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNet1DModel.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="unet" ) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = UNet1DModel.from_pretrained("bglick13/hopper-medium-v2-value-function-hor32", subfolder="unet") torch.manual_seed(0) backend_manual_seed(torch_device, 0) num_features = model.config.in_channels seq_len = 16 noise = torch.randn((1, seq_len, num_features)).permute( 0, 2, 1 ) # match original, we can update values and remove time_step = torch.full((num_features,), 0) with torch.no_grad(): output = model(noise, time_step).sample.permute(0, 2, 1) output_slice = output[0, -3:, -3:].flatten() # fmt: off expected_output_slice = torch.tensor([-2.137172, 1.1426016, 0.3688687, -0.766922, 0.7303146, 0.11038864, -0.4760633, 0.13270172, 0.02591348]) # fmt: on self.assertTrue(torch.allclose(output_slice, expected_output_slice, rtol=1e-3)) def test_forward_with_norm_groups(self): # Not implemented yet for this UNet pass @slow def test_unet_1d_maestro(self): model_id = "harmonai/maestro-150k" model = UNet1DModel.from_pretrained(model_id, subfolder="unet") model.to(torch_device) sample_size = 65536 noise = torch.sin(torch.arange(sample_size)[None, None, :].repeat(1, 2, 1)).to(torch_device) timestep = torch.tensor([1]).to(torch_device) with torch.no_grad(): output = model(noise, timestep).sample output_sum = output.abs().sum() output_max = output.abs().max() assert (output_sum - 224.0896).abs() < 0.5 assert (output_max - 0.0607).abs() < 4e-4 class UNetRLModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = UNet1DModel main_input_name = "sample" @property def dummy_input(self): batch_size = 4 num_features = 14 seq_len = 16 noise = floats_tensor((batch_size, num_features, seq_len)).to(torch_device) time_step = torch.tensor([10] * batch_size).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (4, 14, 16) @property def output_shape(self): return (4, 14, 1) def test_determinism(self): super().test_determinism() def test_outputs_equivalence(self): super().test_outputs_equivalence() def test_from_save_pretrained(self): super().test_from_save_pretrained() def test_from_save_pretrained_variant(self): super().test_from_save_pretrained_variant() def test_model_from_pretrained(self): super().test_model_from_pretrained() def test_output(self): # UNetRL is a value-function is different output shape init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output.sample self.assertIsNotNone(output) expected_shape = torch.Size((inputs_dict["sample"].shape[0], 1)) self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_ema_training(self): pass def test_training(self): pass def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 14, "out_channels": 14, "down_block_types": ["DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"], "up_block_types": [], "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": [32, 64, 128, 256], "layers_per_block": 1, "downsample_each_block": True, "use_timestep_embedding": True, "freq_shift": 1.0, "flip_sin_to_cos": False, "time_embedding_type": "positional", "act_fn": "mish", } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): value_function, vf_loading_info = UNet1DModel.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function" ) self.assertIsNotNone(value_function) self.assertEqual(len(vf_loading_info["missing_keys"]), 0) value_function.to(torch_device) image = value_function(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): value_function, vf_loading_info = UNet1DModel.from_pretrained( "bglick13/hopper-medium-v2-value-function-hor32", output_loading_info=True, subfolder="value_function" ) torch.manual_seed(0) backend_manual_seed(torch_device, 0) num_features = value_function.config.in_channels seq_len = 14 noise = torch.randn((1, seq_len, num_features)).permute( 0, 2, 1 ) # match original, we can update values and remove time_step = torch.full((num_features,), 0) with torch.no_grad(): output = value_function(noise, time_step).sample # fmt: off expected_output_slice = torch.tensor([165.25] * seq_len) # fmt: on self.assertTrue(torch.allclose(output, expected_output_slice, rtol=1e-3)) def test_forward_with_norm_groups(self): # Not implemented yet for this UNet pass