# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Tuple import torch from diffusers.utils.testing_utils import ( floats_tensor, require_torch, require_torch_accelerator_with_training, torch_all_close, torch_device, ) from diffusers.utils.torch_utils import randn_tensor @require_torch class UNetBlockTesterMixin: @property def dummy_input(self): return self.get_dummy_input() @property def output_shape(self): if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(f"'{self.block_type}' is not a supported block_type. Set it to 'up', 'mid', or 'down'.") def get_dummy_input( self, include_temb=True, include_res_hidden_states_tuple=False, include_encoder_hidden_states=False, include_skip_sample=False, ): batch_size = 4 num_channels = 32 sizes = (32, 32) generator = torch.manual_seed(0) device = torch.device(torch_device) shape = (batch_size, num_channels) + sizes hidden_states = randn_tensor(shape, generator=generator, device=device) dummy_input = {"hidden_states": hidden_states} if include_temb: temb_channels = 128 dummy_input["temb"] = randn_tensor((batch_size, temb_channels), generator=generator, device=device) if include_res_hidden_states_tuple: generator_1 = torch.manual_seed(1) dummy_input["res_hidden_states_tuple"] = (randn_tensor(shape, generator=generator_1, device=device),) if include_encoder_hidden_states: dummy_input["encoder_hidden_states"] = floats_tensor((batch_size, 32, 32)).to(torch_device) if include_skip_sample: dummy_input["skip_sample"] = randn_tensor(((batch_size, 3) + sizes), generator=generator, device=device) return dummy_input def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 32, "out_channels": 32, "temb_channels": 128, } if self.block_type == "up": init_dict["prev_output_channel"] = 32 if self.block_type == "mid": init_dict.pop("out_channels") inputs_dict = self.dummy_input return init_dict, inputs_dict def test_output(self, expected_slice): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() unet_block = self.block_class(**init_dict) unet_block.to(torch_device) unet_block.eval() with torch.no_grad(): output = unet_block(**inputs_dict) if isinstance(output, Tuple): output = output[0] self.assertEqual(output.shape, self.output_shape) output_slice = output[0, -1, -3:, -3:] expected_slice = torch.tensor(expected_slice).to(torch_device) assert torch_all_close(output_slice.flatten(), expected_slice, atol=5e-3) @require_torch_accelerator_with_training def test_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.block_class(**init_dict) model.to(torch_device) model.train() output = model(**inputs_dict) if isinstance(output, Tuple): output = output[0] device = torch.device(torch_device) noise = randn_tensor(output.shape, device=device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward()