# Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) # William Peebles and Saining Xie # # Copyright (c) 2021 OpenAI # MIT License # # Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, DiTTransformer2DModel from ...schedulers import KarrasDiffusionSchedulers from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class DiTPipeline(DiffusionPipeline): r""" Pipeline for image generation based on a Transformer backbone instead of a UNet. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: transformer ([`DiTTransformer2DModel`]): A class conditioned `DiTTransformer2DModel` to denoise the encoded image latents. vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. scheduler ([`DDIMScheduler`]): A scheduler to be used in combination with `transformer` to denoise the encoded image latents. """ model_cpu_offload_seq = "transformer->vae" def __init__( self, transformer: DiTTransformer2DModel, vae: AutoencoderKL, scheduler: KarrasDiffusionSchedulers, id2label: Optional[Dict[int, str]] = None, ): super().__init__() self.register_modules(transformer=transformer, vae=vae, scheduler=scheduler) # create a imagenet -> id dictionary for easier use self.labels = {} if id2label is not None: for key, value in id2label.items(): for label in value.split(","): self.labels[label.lstrip().rstrip()] = int(key) self.labels = dict(sorted(self.labels.items())) def get_label_ids(self, label: Union[str, List[str]]) -> List[int]: r""" Map label strings from ImageNet to corresponding class ids. Parameters: label (`str` or `dict` of `str`): Label strings to be mapped to class ids. Returns: `list` of `int`: Class ids to be processed by pipeline. """ if not isinstance(label, list): label = list(label) for l in label: if l not in self.labels: raise ValueError( f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self, class_labels: List[int], guidance_scale: float = 4.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, num_inference_steps: int = 50, output_type: Optional[str] = "pil", return_dict: bool = True, ) -> Union[ImagePipelineOutput, Tuple]: r""" The call function to the pipeline for generation. Args: class_labels (List[int]): List of ImageNet class labels for the images to be generated. guidance_scale (`float`, *optional*, defaults to 4.0): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. generator (`torch.Generator`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. num_inference_steps (`int`, *optional*, defaults to 250): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. Examples: ```py >>> from diffusers import DiTPipeline, DPMSolverMultistepScheduler >>> import torch >>> pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=torch.float16) >>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) >>> pipe = pipe.to("cuda") >>> # pick words from Imagenet class labels >>> pipe.labels # to print all available words >>> # pick words that exist in ImageNet >>> words = ["white shark", "umbrella"] >>> class_ids = pipe.get_label_ids(words) >>> generator = torch.manual_seed(33) >>> output = pipe(class_labels=class_ids, num_inference_steps=25, generator=generator) >>> image = output.images[0] # label 'white shark' ``` Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images """ batch_size = len(class_labels) latent_size = self.transformer.config.sample_size latent_channels = self.transformer.config.in_channels latents = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size), generator=generator, device=self._execution_device, dtype=self.transformer.dtype, ) latent_model_input = torch.cat([latents] * 2) if guidance_scale > 1 else latents class_labels = torch.tensor(class_labels, device=self._execution_device).reshape(-1) class_null = torch.tensor([1000] * batch_size, device=self._execution_device) class_labels_input = torch.cat([class_labels, class_null], 0) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(num_inference_steps) for t in self.progress_bar(self.scheduler.timesteps): if guidance_scale > 1: half = latent_model_input[: len(latent_model_input) // 2] latent_model_input = torch.cat([half, half], dim=0) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) timesteps = t if not torch.is_tensor(timesteps): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) is_mps = latent_model_input.device.type == "mps" if isinstance(timesteps, float): dtype = torch.float32 if is_mps else torch.float64 else: dtype = torch.int32 if is_mps else torch.int64 timesteps = torch.tensor([timesteps], dtype=dtype, device=latent_model_input.device) elif len(timesteps.shape) == 0: timesteps = timesteps[None].to(latent_model_input.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timesteps = timesteps.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = self.transformer( latent_model_input, timestep=timesteps, class_labels=class_labels_input ).sample # perform guidance if guidance_scale > 1: eps, rest = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps) eps = torch.cat([half_eps, half_eps], dim=0) noise_pred = torch.cat([eps, rest], dim=1) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: model_output, _ = torch.split(noise_pred, latent_channels, dim=1) else: model_output = noise_pred # compute previous image: x_t -> x_t-1 latent_model_input = self.scheduler.step(model_output, t, latent_model_input).prev_sample if guidance_scale > 1: latents, _ = latent_model_input.chunk(2, dim=0) else: latents = latent_model_input latents = 1 / self.vae.config.scaling_factor * latents samples = self.vae.decode(latents).sample samples = (samples / 2 + 0.5).clamp(0, 1) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 samples = samples.cpu().permute(0, 2, 3, 1).float().numpy() if output_type == "pil": samples = self.numpy_to_pil(samples) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (samples,) return ImagePipelineOutput(images=samples)