import numpy as np import torch from ...utils import is_invisible_watermark_available if is_invisible_watermark_available(): from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 WATERMARK_MESSAGE = 0b101100111110110010010000011110111011000110011110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 WATERMARK_BITS = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class StableDiffusionXLWatermarker: def __init__(self): self.watermark = WATERMARK_BITS self.encoder = WatermarkEncoder() self.encoder.set_watermark("bits", self.watermark) def apply_watermark(self, images: torch.Tensor): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images images = (255 * (images / 2 + 0.5)).cpu().permute(0, 2, 3, 1).float().numpy() # Convert RGB to BGR, which is the channel order expected by the watermark encoder. images = images[:, :, :, ::-1] # Add watermark and convert BGR back to RGB images = [self.encoder.encode(image, "dwtDct")[:, :, ::-1] for image in images] images = np.array(images) images = torch.from_numpy(images).permute(0, 3, 1, 2) images = torch.clamp(2 * (images / 255 - 0.5), min=-1.0, max=1.0) return images