# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, LDMSuperResolutionPipeline, UNet2DModel, VQModel from diffusers.utils import PIL_INTERPOLATION from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, nightly, require_torch, torch_device, ) enable_full_determinism() class LDMSuperResolutionPipelineFastTests(unittest.TestCase): @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=6, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model @property def dummy_vq_model(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, ) return model def test_inference_superresolution(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(device) generator = torch.Generator(device=device).manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=2, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.8678, 0.8245, 0.6381, 0.6830, 0.4385, 0.5599, 0.4641, 0.6201, 0.5150]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_inference_superresolution_fp16(self): unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vqvae = self.dummy_vq_model # put models in fp16 unet = unet.half() vqvae = vqvae.half() ldm = LDMSuperResolutionPipeline(unet=unet, vqvae=vqvae, scheduler=scheduler) ldm.to(torch_device) ldm.set_progress_bar_config(disable=None) init_image = self.dummy_image.to(torch_device) image = ldm(init_image, num_inference_steps=2, output_type="np").images assert image.shape == (1, 64, 64, 3) @nightly @require_torch class LDMSuperResolutionPipelineIntegrationTests(unittest.TestCase): def test_inference_superresolution(self): init_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool.png" ) init_image = init_image.resize((64, 64), resample=PIL_INTERPOLATION["lanczos"]) ldm = LDMSuperResolutionPipeline.from_pretrained("duongna/ldm-super-resolution") ldm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ldm(image=init_image, generator=generator, num_inference_steps=20, output_type="np").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.7644, 0.7679, 0.7642, 0.7633, 0.7666, 0.7560, 0.7425, 0.7257, 0.6907]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2