# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel from diffusers.pipelines.semantic_stable_diffusion import SemanticStableDiffusionPipeline as StableDiffusionPipeline from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, nightly, require_torch_gpu, torch_device, ) enable_full_determinism() class SafeDiffusionPipelineFastTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_image(self): batch_size = 1 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device) return image @property def dummy_cond_unet(self): torch.manual_seed(0) model = UNet2DConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=32, ) return model @property def dummy_vae(self): torch.manual_seed(0) model = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=4, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config) @property def dummy_extractor(self): def extract(*args, **kwargs): class Out: def __init__(self): self.pixel_values = torch.ones([0]) def to(self, device): self.pixel_values.to(device) return self return Out() return extract def test_semantic_diffusion_ddim(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = DDIMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False, ) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5753, 0.6114, 0.5001, 0.5034, 0.5470, 0.4729, 0.4971, 0.4867, 0.4867]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_semantic_diffusion_pndm(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" generator = torch.Generator(device=device).manual_seed(0) output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np") image = output.images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = sd_pipe( [prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np", return_dict=False, )[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.5122, 0.5712, 0.4825, 0.5053, 0.5646, 0.4769, 0.5179, 0.4894, 0.4994]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_semantic_diffusion_no_safety_checker(self): pipe = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None ) assert isinstance(pipe, StableDiffusionPipeline) assert isinstance(pipe.scheduler, LMSDiscreteScheduler) assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = StableDiffusionPipeline.from_pretrained(tmpdirname) # sanity check that the pipeline still works assert pipe.safety_checker is None image = pipe("example prompt", num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda", "This test requires a GPU") def test_semantic_diffusion_fp16(self): """Test that stable diffusion works with fp16""" unet = self.dummy_cond_unet scheduler = PNDMScheduler(skip_prk_steps=True) vae = self.dummy_vae bert = self.dummy_text_encoder tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") # put models in fp16 unet = unet.half() vae = vae.half() bert = bert.half() # make sure here that pndm scheduler skips prk sd_pipe = StableDiffusionPipeline( unet=unet, scheduler=scheduler, vae=vae, text_encoder=bert, tokenizer=tokenizer, safety_checker=None, feature_extractor=self.dummy_extractor, ) sd_pipe = sd_pipe.to(torch_device) sd_pipe.set_progress_bar_config(disable=None) prompt = "A painting of a squirrel eating a burger" image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class SemanticDiffusionPipelineIntegrationTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_positive_guidance(self): torch_device = "cuda" pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "a photo of a cat" edit = { "editing_prompt": ["sunglasses"], "reverse_editing_direction": [False], "edit_warmup_steps": 10, "edit_guidance_scale": 6, "edit_threshold": 0.95, "edit_momentum_scale": 0.5, "edit_mom_beta": 0.6, } seed = 3 guidance_scale = 7 # no sega enabled generator = torch.Generator(torch_device) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.34673113, 0.38492733, 0.37597352, 0.34086335, 0.35650748, 0.35579205, 0.3384763, 0.34340236, 0.3573271, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # with sega enabled # generator = torch.manual_seed(seed) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, **edit, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.41887826, 0.37728766, 0.30138272, 0.41416335, 0.41664985, 0.36283392, 0.36191246, 0.43364465, 0.43001732, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_negative_guidance(self): torch_device = "cuda" pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "an image of a crowded boulevard, realistic, 4k" edit = { "editing_prompt": "crowd, crowded, people", "reverse_editing_direction": True, "edit_warmup_steps": 10, "edit_guidance_scale": 8.3, "edit_threshold": 0.9, "edit_momentum_scale": 0.5, "edit_mom_beta": 0.6, } seed = 9 guidance_scale = 7 # no sega enabled generator = torch.Generator(torch_device) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.43497998, 0.91814065, 0.7540739, 0.55580205, 0.8467265, 0.5389691, 0.62574506, 0.58897763, 0.50926757, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # with sega enabled # generator = torch.manual_seed(seed) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, **edit, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.3089719, 0.30500144, 0.29016042, 0.30630964, 0.325687, 0.29419225, 0.2908091, 0.28723598, 0.27696294, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_multi_cond_guidance(self): torch_device = "cuda" pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "a castle next to a river" edit = { "editing_prompt": ["boat on a river, boat", "monet, impression, sunrise"], "reverse_editing_direction": False, "edit_warmup_steps": [15, 18], "edit_guidance_scale": 6, "edit_threshold": [0.9, 0.8], "edit_momentum_scale": 0.5, "edit_mom_beta": 0.6, } seed = 48 guidance_scale = 7 # no sega enabled generator = torch.Generator(torch_device) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.75163555, 0.76037145, 0.61785, 0.9189673, 0.8627701, 0.85189694, 0.8512813, 0.87012076, 0.8312857, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # with sega enabled # generator = torch.manual_seed(seed) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, **edit, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.73553365, 0.7537271, 0.74341905, 0.66480356, 0.6472925, 0.63039416, 0.64812905, 0.6749717, 0.6517102, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def test_guidance_fp16(self): torch_device = "cuda" pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "a photo of a cat" edit = { "editing_prompt": ["sunglasses"], "reverse_editing_direction": [False], "edit_warmup_steps": 10, "edit_guidance_scale": 6, "edit_threshold": 0.95, "edit_momentum_scale": 0.5, "edit_mom_beta": 0.6, } seed = 3 guidance_scale = 7 # no sega enabled generator = torch.Generator(torch_device) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.34887695, 0.3876953, 0.375, 0.34423828, 0.3581543, 0.35717773, 0.3383789, 0.34570312, 0.359375, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # with sega enabled # generator = torch.manual_seed(seed) generator.manual_seed(seed) output = pipe( [prompt], generator=generator, guidance_scale=guidance_scale, num_inference_steps=50, output_type="np", width=512, height=512, **edit, ) image = output.images image_slice = image[0, -3:, -3:, -1] expected_slice = [ 0.42285156, 0.36914062, 0.29077148, 0.42041016, 0.41918945, 0.35498047, 0.3618164, 0.4423828, 0.43115234, ] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2