# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import StableCascadeUNet from diffusers.utils import logging from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_gpu, slow, ) logger = logging.get_logger(__name__) enable_full_determinism() @slow @require_torch_gpu class StableCascadeUNetSingleFileTest(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_single_file_components_stage_b(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade", variant="bf16", subfolder="decoder", use_safetensors=True ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" def test_single_file_components_stage_b_lite(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade", variant="bf16", subfolder="decoder_lite" ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" def test_single_file_components_stage_c(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior" ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading" def test_single_file_components_stage_c_lite(self): model_single_file = StableCascadeUNet.from_single_file( "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_c_lite_bf16.safetensors", torch_dtype=torch.bfloat16, ) model = StableCascadeUNet.from_pretrained( "stabilityai/stable-cascade-prior", variant="bf16", subfolder="prior_lite" ) PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values", "_diffusers_version"] for param_name, param_value in model_single_file.config.items(): if param_name in PARAMS_TO_IGNORE: continue assert ( model.config[param_name] == param_value ), f"{param_name} differs between single file loading and pretrained loading"