import gc import unittest import torch from diffusers import ( StableDiffusionInpaintPipeline, ) from diffusers.utils import load_image from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_gpu, slow, ) from .single_file_testing_utils import SDSingleFileTesterMixin enable_full_determinism() @slow @require_torch_gpu class StableDiffusionInpaintPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionInpaintPipeline ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-inpainting/blob/main/sd-v1-5-inpainting.ckpt" original_config = "https://raw.githubusercontent.com/runwayml/stable-diffusion/main/configs/stable-diffusion/v1-inpainting-inference.yaml" repo_id = "runwayml/stable-diffusion-inpainting" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ) inputs = { "prompt": "Face of a yellow cat, high resolution, sitting on a park bench", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3) def test_single_file_loading_4_channel_unet(self): # Test loading single file inpaint with a 4 channel UNet ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors" pipe = self.pipeline_class.from_single_file(ckpt_path) assert pipe.unet.config.in_channels == 4 @slow @require_torch_gpu class StableDiffusion21InpaintPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionInpaintPipeline ckpt_path = ( "https://huggingface.co/stabilityai/stable-diffusion-2-inpainting/blob/main/512-inpainting-ema.safetensors" ) original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inpainting-inference.yaml" repo_id = "stabilityai/stable-diffusion-2-inpainting" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) init_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_image.png" ) mask_image = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" "/stable_diffusion_inpaint/input_bench_mask.png" ) inputs = { "prompt": "Face of a yellow cat, high resolution, sitting on a park bench", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)