import gc import tempfile import unittest import torch from diffusers import ( StableDiffusionXLAdapterPipeline, T2IAdapter, ) from diffusers.utils import load_image from diffusers.utils.testing_utils import ( enable_full_determinism, numpy_cosine_similarity_distance, require_torch_gpu, slow, ) from .single_file_testing_utils import ( SDXLSingleFileTesterMixin, download_diffusers_config, download_original_config, download_single_file_checkpoint, ) enable_full_determinism() @slow @require_torch_gpu class StableDiffusionXLAdapterPipelineSingleFileSlowTests(unittest.TestCase, SDXLSingleFileTesterMixin): pipeline_class = StableDiffusionXLAdapterPipeline ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/sd_xl_base_1.0.safetensors" repo_id = "stabilityai/stable-diffusion-xl-base-1.0" original_config = ( "https://raw.githubusercontent.com/Stability-AI/generative-models/main/configs/inference/sd_xl_base.yaml" ) def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self): prompt = "toy" generator = torch.Generator(device="cpu").manual_seed(0) image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png" ) inputs = { "prompt": prompt, "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16) pipe_single_file = StableDiffusionXLAdapterPipeline.from_single_file( self.ckpt_path, adapter=adapter, torch_dtype=torch.float16, safety_checker=None, ) pipe_single_file.enable_model_cpu_offload() pipe_single_file.set_progress_bar_config(disable=None) inputs = self.get_inputs() images_single_file = pipe_single_file(**inputs).images[0] pipe = StableDiffusionXLAdapterPipeline.from_pretrained( self.repo_id, adapter=adapter, torch_dtype=torch.float16, safety_checker=None, ) pipe.enable_model_cpu_offload() inputs = self.get_inputs() images = pipe(**inputs).images[0] assert images_single_file.shape == (768, 512, 3) assert images.shape == (768, 512, 3) max_diff = numpy_cosine_similarity_distance(images.flatten(), images_single_file.flatten()) assert max_diff < 5e-3 def test_single_file_components(self): adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16) pipe = self.pipeline_class.from_pretrained( self.repo_id, variant="fp16", adapter=adapter, torch_dtype=torch.float16, ) pipe_single_file = self.pipeline_class.from_single_file(self.ckpt_path, safety_checker=None, adapter=adapter) super().test_single_file_components(pipe, pipe_single_file) def test_single_file_components_local_files_only(self): adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16) pipe = self.pipeline_class.from_pretrained( self.repo_id, variant="fp16", adapter=adapter, torch_dtype=torch.float16, ) with tempfile.TemporaryDirectory() as tmpdir: ckpt_filename = self.ckpt_path.split("/")[-1] local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir) single_file_pipe = self.pipeline_class.from_single_file( local_ckpt_path, adapter=adapter, safety_checker=None, local_files_only=True ) self._compare_component_configs(pipe, single_file_pipe) def test_single_file_components_with_diffusers_config(self): adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16) pipe = self.pipeline_class.from_pretrained( self.repo_id, variant="fp16", adapter=adapter, torch_dtype=torch.float16, safety_checker=None, ) pipe_single_file = self.pipeline_class.from_single_file(self.ckpt_path, config=self.repo_id, adapter=adapter) self._compare_component_configs(pipe, pipe_single_file) def test_single_file_components_with_diffusers_config_local_files_only(self): adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16) pipe = self.pipeline_class.from_pretrained( self.repo_id, variant="fp16", adapter=adapter, torch_dtype=torch.float16, ) with tempfile.TemporaryDirectory() as tmpdir: ckpt_filename = self.ckpt_path.split("/")[-1] local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir) local_diffusers_config = download_diffusers_config(self.repo_id, tmpdir) pipe_single_file = self.pipeline_class.from_single_file( local_ckpt_path, config=local_diffusers_config, adapter=adapter, safety_checker=None, local_files_only=True, ) self._compare_component_configs(pipe, pipe_single_file) def test_single_file_components_with_original_config(self): adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16) pipe = self.pipeline_class.from_pretrained( self.repo_id, variant="fp16", adapter=adapter, torch_dtype=torch.float16, safety_checker=None, ) pipe_single_file = self.pipeline_class.from_single_file( self.ckpt_path, original_config=self.original_config, adapter=adapter ) self._compare_component_configs(pipe, pipe_single_file) def test_single_file_components_with_original_config_local_files_only(self): adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16) pipe = self.pipeline_class.from_pretrained( self.repo_id, variant="fp16", adapter=adapter, torch_dtype=torch.float16, ) with tempfile.TemporaryDirectory() as tmpdir: ckpt_filename = self.ckpt_path.split("/")[-1] local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir) local_original_config = download_original_config(self.original_config, tmpdir) pipe_single_file = self.pipeline_class.from_single_file( local_ckpt_path, original_config=local_original_config, adapter=adapter, safety_checker=None, local_files_only=True, ) self._compare_component_configs(pipe, pipe_single_file)