# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...utils import is_torch_version, logging from ..attention import BasicTransformerBlock from ..embeddings import PatchEmbed from ..modeling_outputs import Transformer2DModelOutput from ..modeling_utils import ModelMixin logger = logging.get_logger(__name__) # pylint: disable=invalid-name class DiTTransformer2DModel(ModelMixin, ConfigMixin): r""" A 2D Transformer model as introduced in DiT (https://arxiv.org/abs/2212.09748). Parameters: num_attention_heads (int, optional, defaults to 16): The number of heads to use for multi-head attention. attention_head_dim (int, optional, defaults to 72): The number of channels in each head. in_channels (int, defaults to 4): The number of channels in the input. out_channels (int, optional): The number of channels in the output. Specify this parameter if the output channel number differs from the input. num_layers (int, optional, defaults to 28): The number of layers of Transformer blocks to use. dropout (float, optional, defaults to 0.0): The dropout probability to use within the Transformer blocks. norm_num_groups (int, optional, defaults to 32): Number of groups for group normalization within Transformer blocks. attention_bias (bool, optional, defaults to True): Configure if the Transformer blocks' attention should contain a bias parameter. sample_size (int, defaults to 32): The width of the latent images. This parameter is fixed during training. patch_size (int, defaults to 2): Size of the patches the model processes, relevant for architectures working on non-sequential data. activation_fn (str, optional, defaults to "gelu-approximate"): Activation function to use in feed-forward networks within Transformer blocks. num_embeds_ada_norm (int, optional, defaults to 1000): Number of embeddings for AdaLayerNorm, fixed during training and affects the maximum denoising steps during inference. upcast_attention (bool, optional, defaults to False): If true, upcasts the attention mechanism dimensions for potentially improved performance. norm_type (str, optional, defaults to "ada_norm_zero"): Specifies the type of normalization used, can be 'ada_norm_zero'. norm_elementwise_affine (bool, optional, defaults to False): If true, enables element-wise affine parameters in the normalization layers. norm_eps (float, optional, defaults to 1e-5): A small constant added to the denominator in normalization layers to prevent division by zero. """ _supports_gradient_checkpointing = True @register_to_config def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 72, in_channels: int = 4, out_channels: Optional[int] = None, num_layers: int = 28, dropout: float = 0.0, norm_num_groups: int = 32, attention_bias: bool = True, sample_size: int = 32, patch_size: int = 2, activation_fn: str = "gelu-approximate", num_embeds_ada_norm: Optional[int] = 1000, upcast_attention: bool = False, norm_type: str = "ada_norm_zero", norm_elementwise_affine: bool = False, norm_eps: float = 1e-5, ): super().__init__() # Validate inputs. if norm_type != "ada_norm_zero": raise NotImplementedError( f"Forward pass is not implemented when `patch_size` is not None and `norm_type` is '{norm_type}'." ) elif norm_type == "ada_norm_zero" and num_embeds_ada_norm is None: raise ValueError( f"When using a `patch_size` and this `norm_type` ({norm_type}), `num_embeds_ada_norm` cannot be None." ) # Set some common variables used across the board. self.attention_head_dim = attention_head_dim self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim self.out_channels = in_channels if out_channels is None else out_channels self.gradient_checkpointing = False # 2. Initialize the position embedding and transformer blocks. self.height = self.config.sample_size self.width = self.config.sample_size self.patch_size = self.config.patch_size self.pos_embed = PatchEmbed( height=self.config.sample_size, width=self.config.sample_size, patch_size=self.config.patch_size, in_channels=self.config.in_channels, embed_dim=self.inner_dim, ) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock( self.inner_dim, self.config.num_attention_heads, self.config.attention_head_dim, dropout=self.config.dropout, activation_fn=self.config.activation_fn, num_embeds_ada_norm=self.config.num_embeds_ada_norm, attention_bias=self.config.attention_bias, upcast_attention=self.config.upcast_attention, norm_type=norm_type, norm_elementwise_affine=self.config.norm_elementwise_affine, norm_eps=self.config.norm_eps, ) for _ in range(self.config.num_layers) ] ) # 3. Output blocks. self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim) self.proj_out_2 = nn.Linear( self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels ) def _set_gradient_checkpointing(self, module, value=False): if hasattr(module, "gradient_checkpointing"): module.gradient_checkpointing = value def forward( self, hidden_states: torch.Tensor, timestep: Optional[torch.LongTensor] = None, class_labels: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, return_dict: bool = True, ): """ The [`DiTTransformer2DModel`] forward method. Args: hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): Input `hidden_states`. timestep ( `torch.LongTensor`, *optional*): Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in `AdaLayerZeroNorm`. cross_attention_kwargs ( `Dict[str, Any]`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. Returns: If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a `tuple` where the first element is the sample tensor. """ # 1. Input height, width = hidden_states.shape[-2] // self.patch_size, hidden_states.shape[-1] // self.patch_size hidden_states = self.pos_embed(hidden_states) # 2. Blocks for block in self.transformer_blocks: if self.training and self.gradient_checkpointing: def create_custom_forward(module, return_dict=None): def custom_forward(*inputs): if return_dict is not None: return module(*inputs, return_dict=return_dict) else: return module(*inputs) return custom_forward ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(block), hidden_states, None, None, None, timestep, cross_attention_kwargs, class_labels, **ckpt_kwargs, ) else: hidden_states = block( hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, timestep=timestep, cross_attention_kwargs=cross_attention_kwargs, class_labels=class_labels, ) # 3. Output conditioning = self.transformer_blocks[0].norm1.emb(timestep, class_labels, hidden_dtype=hidden_states.dtype) shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1) hidden_states = self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None] hidden_states = self.proj_out_2(hidden_states) # unpatchify height = width = int(hidden_states.shape[1] ** 0.5) hidden_states = hidden_states.reshape( shape=(-1, height, width, self.patch_size, self.patch_size, self.out_channels) ) hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states) output = hidden_states.reshape( shape=(-1, self.out_channels, height * self.patch_size, width * self.patch_size) ) if not return_dict: return (output,) return Transformer2DModelOutput(sample=output)