# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPVisionModelWithProjection, ) from diffusers import ( StableDiffusionImg2ImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionPipeline, StableDiffusionXLImg2ImgPipeline, StableDiffusionXLInpaintPipeline, StableDiffusionXLPipeline, ) from diffusers.image_processor import IPAdapterMaskProcessor from diffusers.utils import load_image from diffusers.utils.testing_utils import ( enable_full_determinism, is_flaky, load_pt, numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device, ) enable_full_determinism() class IPAdapterNightlyTestsMixin(unittest.TestCase): dtype = torch.float16 def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def get_image_encoder(self, repo_id, subfolder): image_encoder = CLIPVisionModelWithProjection.from_pretrained( repo_id, subfolder=subfolder, torch_dtype=self.dtype ).to(torch_device) return image_encoder def get_image_processor(self, repo_id): image_processor = CLIPImageProcessor.from_pretrained(repo_id) return image_processor def get_dummy_inputs( self, for_image_to_image=False, for_inpainting=False, for_sdxl=False, for_masks=False, for_instant_style=False ): image = load_image( "https://user-images.githubusercontent.com/24734142/266492875-2d50d223-8475-44f0-a7c6-08b51cb53572.png" ) if for_sdxl: image = image.resize((1024, 1024)) input_kwargs = { "prompt": "best quality, high quality", "negative_prompt": "monochrome, lowres, bad anatomy, worst quality, low quality", "num_inference_steps": 5, "generator": torch.Generator(device="cpu").manual_seed(33), "ip_adapter_image": image, "output_type": "np", } if for_image_to_image: image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/vermeer.jpg") ip_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/river.png") if for_sdxl: image = image.resize((1024, 1024)) ip_image = ip_image.resize((1024, 1024)) input_kwargs.update({"image": image, "ip_adapter_image": ip_image}) elif for_inpainting: image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/inpaint_image.png") mask = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/mask.png") ip_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/girl.png") if for_sdxl: image = image.resize((1024, 1024)) mask = mask.resize((1024, 1024)) ip_image = ip_image.resize((1024, 1024)) input_kwargs.update({"image": image, "mask_image": mask, "ip_adapter_image": ip_image}) elif for_masks: face_image1 = load_image( "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl1.png" ) face_image2 = load_image( "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl2.png" ) mask1 = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask1.png") mask2 = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask2.png") input_kwargs.update( { "ip_adapter_image": [[face_image1], [face_image2]], "cross_attention_kwargs": {"ip_adapter_masks": [mask1, mask2]}, } ) elif for_instant_style: composition_mask = load_image( "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/1024_whole_mask.png" ) female_mask = load_image( "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter_None_20240321125641_mask.png" ) male_mask = load_image( "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter_None_20240321125344_mask.png" ) background_mask = load_image( "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter_6_20240321130722_mask.png" ) ip_composition_image = load_image( "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter__20240321125152.png" ) ip_female_style = load_image( "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter__20240321125625.png" ) ip_male_style = load_image( "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter__20240321125329.png" ) ip_background = load_image( "https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/ip_adapter__20240321130643.png" ) input_kwargs.update( { "ip_adapter_image": [ip_composition_image, [ip_female_style, ip_male_style, ip_background]], "cross_attention_kwargs": { "ip_adapter_masks": [[composition_mask], [female_mask, male_mask, background_mask]] }, } ) return input_kwargs @slow @require_torch_gpu class IPAdapterSDIntegrationTests(IPAdapterNightlyTestsMixin): def test_text_to_image(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype ) pipeline.to(torch_device) pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") inputs = self.get_dummy_inputs() images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array([0.80810547, 0.88183594, 0.9296875, 0.9189453, 0.9848633, 1.0, 0.97021484, 1.0, 1.0]) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin") inputs = self.get_dummy_inputs() images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [0.30444336, 0.26513672, 0.22436523, 0.2758789, 0.25585938, 0.20751953, 0.25390625, 0.24633789, 0.21923828] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 def test_image_to_image(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype ) pipeline.to(torch_device) pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") inputs = self.get_dummy_inputs(for_image_to_image=True) images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [0.22167969, 0.21875, 0.21728516, 0.22607422, 0.21948242, 0.23925781, 0.22387695, 0.25268555, 0.2722168] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin") inputs = self.get_dummy_inputs(for_image_to_image=True) images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [0.35913086, 0.265625, 0.26367188, 0.24658203, 0.19750977, 0.39990234, 0.15258789, 0.20336914, 0.5517578] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 def test_inpainting(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype ) pipeline.to(torch_device) pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") inputs = self.get_dummy_inputs(for_inpainting=True) images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [0.27148438, 0.24047852, 0.22167969, 0.23217773, 0.21118164, 0.21142578, 0.21875, 0.20751953, 0.20019531] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin") inputs = self.get_dummy_inputs(for_inpainting=True) images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 def test_text_to_image_model_cpu_offload(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype ) pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipeline.to(torch_device) inputs = self.get_dummy_inputs() output_without_offload = pipeline(**inputs).images pipeline.enable_model_cpu_offload() inputs = self.get_dummy_inputs() output_with_offload = pipeline(**inputs).images max_diff = np.abs(output_with_offload - output_without_offload).max() self.assertLess(max_diff, 1e-3, "CPU offloading should not affect the inference results") offloaded_modules = [ v for k, v in pipeline.components.items() if isinstance(v, torch.nn.Module) and k not in pipeline._exclude_from_cpu_offload ] ( self.assertTrue(all(v.device.type == "cpu" for v in offloaded_modules)), f"Not offloaded: {[v for v in offloaded_modules if v.device.type != 'cpu']}", ) def test_text_to_image_full_face(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype ) pipeline.to(torch_device) pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-full-face_sd15.bin") pipeline.set_ip_adapter_scale(0.7) inputs = self.get_dummy_inputs() images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array([0.1704, 0.1296, 0.1272, 0.2212, 0.1514, 0.1479, 0.4172, 0.4263, 0.4360]) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 def test_unload(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype ) before_processors = [attn_proc.__class__ for attn_proc in pipeline.unet.attn_processors.values()] pipeline.to(torch_device) pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin") pipeline.set_ip_adapter_scale(0.7) pipeline.unload_ip_adapter() assert getattr(pipeline, "image_encoder") is None assert getattr(pipeline, "feature_extractor") is not None after_processors = [attn_proc.__class__ for attn_proc in pipeline.unet.attn_processors.values()] assert before_processors == after_processors @is_flaky def test_multi(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", image_encoder=image_encoder, safety_checker=None, torch_dtype=self.dtype ) pipeline.to(torch_device) pipeline.load_ip_adapter( "h94/IP-Adapter", subfolder="models", weight_name=["ip-adapter_sd15.bin", "ip-adapter-plus_sd15.bin"] ) pipeline.set_ip_adapter_scale([0.7, 0.3]) inputs = self.get_dummy_inputs() ip_adapter_image = inputs["ip_adapter_image"] inputs["ip_adapter_image"] = [ip_adapter_image, [ip_adapter_image] * 2] images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array([0.5234, 0.5352, 0.5625, 0.5713, 0.5947, 0.6206, 0.5786, 0.6187, 0.6494]) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 def test_text_to_image_face_id(self): pipeline = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", safety_checker=None, torch_dtype=self.dtype ) pipeline.to(torch_device) pipeline.load_ip_adapter( "h94/IP-Adapter-FaceID", subfolder=None, weight_name="ip-adapter-faceid_sd15.bin", image_encoder_folder=None, ) pipeline.set_ip_adapter_scale(0.7) inputs = self.get_dummy_inputs() id_embeds = load_pt("https://huggingface.co/datasets/fabiorigano/testing-images/resolve/main/ai_face2.ipadpt")[ 0 ] id_embeds = id_embeds.reshape((2, 1, 1, 512)) inputs["ip_adapter_image_embeds"] = [id_embeds] inputs["ip_adapter_image"] = None images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [0.32714844, 0.3239746, 0.3466797, 0.31835938, 0.30004883, 0.3251953, 0.3215332, 0.3552246, 0.3251953] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 @slow @require_torch_gpu class IPAdapterSDXLIntegrationTests(IPAdapterNightlyTestsMixin): def test_text_to_image_sdxl(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="sdxl_models/image_encoder") feature_extractor = self.get_image_processor("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k") pipeline = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", image_encoder=image_encoder, feature_extractor=feature_extractor, torch_dtype=self.dtype, ) pipeline.enable_model_cpu_offload() pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") inputs = self.get_dummy_inputs() images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [ 0.09630299, 0.09551358, 0.08480701, 0.09070173, 0.09437338, 0.09264627, 0.08883232, 0.09287417, 0.09197289, ] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", image_encoder=image_encoder, feature_extractor=feature_extractor, torch_dtype=self.dtype, ) pipeline.to(torch_device) pipeline.load_ip_adapter( "h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus_sdxl_vit-h.bin", ) inputs = self.get_dummy_inputs() images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [0.0576596, 0.05600825, 0.04479006, 0.05288461, 0.05461192, 0.05137569, 0.04867965, 0.05301541, 0.04939842] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 def test_image_to_image_sdxl(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="sdxl_models/image_encoder") feature_extractor = self.get_image_processor("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k") pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", image_encoder=image_encoder, feature_extractor=feature_extractor, torch_dtype=self.dtype, ) pipeline.enable_model_cpu_offload() pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") inputs = self.get_dummy_inputs(for_image_to_image=True) images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [ 0.06513795, 0.07009393, 0.07234055, 0.07426041, 0.07002589, 0.06415862, 0.07827643, 0.07962808, 0.07411247, ] ) assert np.allclose(image_slice, expected_slice, atol=1e-3) image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") feature_extractor = self.get_image_processor("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k") pipeline = StableDiffusionXLImg2ImgPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", image_encoder=image_encoder, feature_extractor=feature_extractor, torch_dtype=self.dtype, ) pipeline.to(torch_device) pipeline.load_ip_adapter( "h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus_sdxl_vit-h.bin", ) inputs = self.get_dummy_inputs(for_image_to_image=True) images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [ 0.07126552, 0.07025367, 0.07348302, 0.07580167, 0.07467338, 0.06918576, 0.07480252, 0.08279955, 0.08547315, ] ) assert np.allclose(image_slice, expected_slice, atol=1e-3) def test_inpainting_sdxl(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="sdxl_models/image_encoder") feature_extractor = self.get_image_processor("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k") pipeline = StableDiffusionXLInpaintPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", image_encoder=image_encoder, feature_extractor=feature_extractor, torch_dtype=self.dtype, ) pipeline.enable_model_cpu_offload() pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") inputs = self.get_dummy_inputs(for_inpainting=True) images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() image_slice.tolist() expected_slice = np.array( [0.14181179, 0.1493012, 0.14283323, 0.14602411, 0.14915377, 0.15015268, 0.14725655, 0.15009224, 0.15164584] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") feature_extractor = self.get_image_processor("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k") pipeline = StableDiffusionXLInpaintPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", image_encoder=image_encoder, feature_extractor=feature_extractor, torch_dtype=self.dtype, ) pipeline.to(torch_device) pipeline.load_ip_adapter( "h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus_sdxl_vit-h.bin", ) inputs = self.get_dummy_inputs(for_inpainting=True) images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() image_slice.tolist() expected_slice = np.array([0.1398, 0.1476, 0.1407, 0.1442, 0.1470, 0.1480, 0.1449, 0.1481, 0.1494]) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 def test_ip_adapter_single_mask(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", image_encoder=image_encoder, torch_dtype=self.dtype, ) pipeline.enable_model_cpu_offload() pipeline.load_ip_adapter( "h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter-plus-face_sdxl_vit-h.safetensors" ) pipeline.set_ip_adapter_scale(0.7) inputs = self.get_dummy_inputs(for_masks=True) mask = inputs["cross_attention_kwargs"]["ip_adapter_masks"][0] processor = IPAdapterMaskProcessor() mask = processor.preprocess(mask) inputs["cross_attention_kwargs"]["ip_adapter_masks"] = mask inputs["ip_adapter_image"] = inputs["ip_adapter_image"][0] images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [0.7307304, 0.73450166, 0.73731124, 0.7377061, 0.7318013, 0.73720926, 0.74746597, 0.7409929, 0.74074936] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 def test_ip_adapter_multiple_masks(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", image_encoder=image_encoder, torch_dtype=self.dtype, ) pipeline.enable_model_cpu_offload() pipeline.load_ip_adapter( "h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus-face_sdxl_vit-h.safetensors"] * 2 ) pipeline.set_ip_adapter_scale([0.7] * 2) inputs = self.get_dummy_inputs(for_masks=True) masks = inputs["cross_attention_kwargs"]["ip_adapter_masks"] processor = IPAdapterMaskProcessor() masks = processor.preprocess(masks) inputs["cross_attention_kwargs"]["ip_adapter_masks"] = masks images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [0.79474676, 0.7977683, 0.8013954, 0.7988008, 0.7970615, 0.8029355, 0.80614823, 0.8050743, 0.80627424] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 def test_instant_style_multiple_masks(self): image_encoder = CLIPVisionModelWithProjection.from_pretrained( "h94/IP-Adapter", subfolder="models/image_encoder", torch_dtype=torch.float16 ) pipeline = StableDiffusionXLPipeline.from_pretrained( "RunDiffusion/Juggernaut-XL-v9", torch_dtype=torch.float16, image_encoder=image_encoder, variant="fp16" ) pipeline.enable_model_cpu_offload() pipeline.load_ip_adapter( ["ostris/ip-composition-adapter", "h94/IP-Adapter"], subfolder=["", "sdxl_models"], weight_name=[ "ip_plus_composition_sdxl.safetensors", "ip-adapter_sdxl_vit-h.safetensors", ], image_encoder_folder=None, ) scale_1 = { "down": [[0.0, 0.0, 1.0]], "mid": [[0.0, 0.0, 1.0]], "up": {"block_0": [[0.0, 0.0, 1.0], [1.0, 1.0, 1.0], [0.0, 0.0, 1.0]], "block_1": [[0.0, 0.0, 1.0]]}, } pipeline.set_ip_adapter_scale([1.0, scale_1]) inputs = self.get_dummy_inputs(for_instant_style=True) processor = IPAdapterMaskProcessor() masks1 = inputs["cross_attention_kwargs"]["ip_adapter_masks"][0] masks2 = inputs["cross_attention_kwargs"]["ip_adapter_masks"][1] masks1 = processor.preprocess(masks1, height=1024, width=1024) masks2 = processor.preprocess(masks2, height=1024, width=1024) masks2 = masks2.reshape(1, masks2.shape[0], masks2.shape[2], masks2.shape[3]) inputs["cross_attention_kwargs"]["ip_adapter_masks"] = [masks1, masks2] images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [0.23551631, 0.20476806, 0.14099443, 0.0, 0.07675594, 0.05672678, 0.0, 0.0, 0.02099729] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4 def test_ip_adapter_multiple_masks_one_adapter(self): image_encoder = self.get_image_encoder(repo_id="h94/IP-Adapter", subfolder="models/image_encoder") pipeline = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", image_encoder=image_encoder, torch_dtype=self.dtype, ) pipeline.enable_model_cpu_offload() pipeline.load_ip_adapter( "h94/IP-Adapter", subfolder="sdxl_models", weight_name=["ip-adapter-plus-face_sdxl_vit-h.safetensors"] ) pipeline.set_ip_adapter_scale([[0.7, 0.7]]) inputs = self.get_dummy_inputs(for_masks=True) masks = inputs["cross_attention_kwargs"]["ip_adapter_masks"] processor = IPAdapterMaskProcessor() masks = processor.preprocess(masks) masks = masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3]) inputs["cross_attention_kwargs"]["ip_adapter_masks"] = [masks] ip_images = inputs["ip_adapter_image"] inputs["ip_adapter_image"] = [[image[0] for image in ip_images]] images = pipeline(**inputs).images image_slice = images[0, :3, :3, -1].flatten() expected_slice = np.array( [0.79474676, 0.7977683, 0.8013954, 0.7988008, 0.7970615, 0.8029355, 0.80614823, 0.8050743, 0.80627424] ) max_diff = numpy_cosine_similarity_distance(image_slice, expected_slice) assert max_diff < 5e-4