import torch

from diffusers import TCDScheduler

from .test_schedulers import SchedulerCommonTest


class TCDSchedulerTest(SchedulerCommonTest):
    scheduler_classes = (TCDScheduler,)
    forward_default_kwargs = (("num_inference_steps", 10),)

    def get_scheduler_config(self, **kwargs):
        config = {
            "num_train_timesteps": 1000,
            "beta_start": 0.00085,
            "beta_end": 0.0120,
            "beta_schedule": "scaled_linear",
            "prediction_type": "epsilon",
        }

        config.update(**kwargs)
        return config

    @property
    def default_num_inference_steps(self):
        return 10

    @property
    def default_valid_timestep(self):
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        scheduler_config = self.get_scheduler_config()
        scheduler = self.scheduler_classes[0](**scheduler_config)

        scheduler.set_timesteps(num_inference_steps)
        timestep = scheduler.timesteps[-1]
        return timestep

    def test_timesteps(self):
        for timesteps in [100, 500, 1000]:
            # 0 is not guaranteed to be in the timestep schedule, but timesteps - 1 is
            self.check_over_configs(time_step=timesteps - 1, num_train_timesteps=timesteps)

    def test_betas(self):
        for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
            self.check_over_configs(time_step=self.default_valid_timestep, beta_start=beta_start, beta_end=beta_end)

    def test_schedules(self):
        for schedule in ["linear", "scaled_linear", "squaredcos_cap_v2"]:
            self.check_over_configs(time_step=self.default_valid_timestep, beta_schedule=schedule)

    def test_prediction_type(self):
        for prediction_type in ["epsilon", "v_prediction"]:
            self.check_over_configs(time_step=self.default_valid_timestep, prediction_type=prediction_type)

    def test_clip_sample(self):
        for clip_sample in [True, False]:
            self.check_over_configs(time_step=self.default_valid_timestep, clip_sample=clip_sample)

    def test_thresholding(self):
        self.check_over_configs(time_step=self.default_valid_timestep, thresholding=False)
        for threshold in [0.5, 1.0, 2.0]:
            for prediction_type in ["epsilon", "v_prediction"]:
                self.check_over_configs(
                    time_step=self.default_valid_timestep,
                    thresholding=True,
                    prediction_type=prediction_type,
                    sample_max_value=threshold,
                )

    def test_time_indices(self):
        # Get default timestep schedule.
        kwargs = dict(self.forward_default_kwargs)
        num_inference_steps = kwargs.pop("num_inference_steps", None)

        scheduler_config = self.get_scheduler_config()
        scheduler = self.scheduler_classes[0](**scheduler_config)

        scheduler.set_timesteps(num_inference_steps)
        timesteps = scheduler.timesteps
        for t in timesteps:
            self.check_over_forward(time_step=t)

    def test_inference_steps(self):
        # Hardcoded for now
        for t, num_inference_steps in zip([99, 39, 39, 19], [10, 25, 26, 50]):
            self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)

    def full_loop(self, num_inference_steps=10, seed=0, **config):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config(**config)
        scheduler = scheduler_class(**scheduler_config)

        eta = 0.0  # refer to gamma in the paper

        model = self.dummy_model()
        sample = self.dummy_sample_deter
        generator = torch.manual_seed(seed)
        scheduler.set_timesteps(num_inference_steps)

        for t in scheduler.timesteps:
            residual = model(sample, t)
            sample = scheduler.step(residual, t, sample, eta, generator).prev_sample

        return sample

    def test_full_loop_onestep_deter(self):
        sample = self.full_loop(num_inference_steps=1)

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 29.8715) < 1e-3  # 0.0778918
        assert abs(result_mean.item() - 0.0389) < 1e-3

    def test_full_loop_multistep_deter(self):
        sample = self.full_loop(num_inference_steps=10)

        result_sum = torch.sum(torch.abs(sample))
        result_mean = torch.mean(torch.abs(sample))

        assert abs(result_sum.item() - 181.2040) < 1e-3
        assert abs(result_mean.item() - 0.2359) < 1e-3

    def test_custom_timesteps(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [100, 87, 50, 1, 0]

        scheduler.set_timesteps(timesteps=timesteps)

        scheduler_timesteps = scheduler.timesteps

        for i, timestep in enumerate(scheduler_timesteps):
            if i == len(timesteps) - 1:
                expected_prev_t = -1
            else:
                expected_prev_t = timesteps[i + 1]

            prev_t = scheduler.previous_timestep(timestep)
            prev_t = prev_t.item()

            self.assertEqual(prev_t, expected_prev_t)

    def test_custom_timesteps_increasing_order(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [100, 87, 50, 51, 0]

        with self.assertRaises(ValueError, msg="`custom_timesteps` must be in descending order."):
            scheduler.set_timesteps(timesteps=timesteps)

    def test_custom_timesteps_passing_both_num_inference_steps_and_timesteps(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [100, 87, 50, 1, 0]
        num_inference_steps = len(timesteps)

        with self.assertRaises(ValueError, msg="Can only pass one of `num_inference_steps` or `custom_timesteps`."):
            scheduler.set_timesteps(num_inference_steps=num_inference_steps, timesteps=timesteps)

    def test_custom_timesteps_too_large(self):
        scheduler_class = self.scheduler_classes[0]
        scheduler_config = self.get_scheduler_config()
        scheduler = scheduler_class(**scheduler_config)

        timesteps = [scheduler.config.num_train_timesteps]

        with self.assertRaises(
            ValueError,
            msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}",
        ):
            scheduler.set_timesteps(timesteps=timesteps)