# AnimatedDiff ControlNet SDXL Example This document provides a step-by-step guide to setting up and running the `animatediff_controlnet_sdxl.py` script from the Hugging Face repository. The script leverages the `diffusers-sdxl-controlnet` library to generate animated images using ControlNet and SDXL models. ## Prerequisites Before running the script, ensure you have the necessary dependencies installed. You can install them using the following commands: ### System Dependencies ```bash sudo apt-get update && sudo apt-get install git-lfs cbm ffmpeg ``` ### Python Dependencies ```bash pip install git+https://huggingface.co/svjack/diffusers-sdxl-controlnet pip install transformers peft sentencepiece moviepy==1.0.3 controlnet_aux ``` ### Clone the Repository ```bash git clone https://huggingface.co/svjack/diffusers-sdxl-controlnet cp diffusers-sdxl-controlnet/girl-pose.gif . cp diffusers-sdxl-controlnet/girl_beach.mp4 . ``` ## Script Modifications The script requires some modifications to work correctly. Specifically, you need to comment out certain lines related to LoRA processors: ```python ''' drop #LoRAAttnProcessor2_0, #LoRAXFormersAttnProcessor, ''' ``` ## GIF to Frames Conversion The script includes a function to convert a GIF into individual frames. This is useful for preparing input data for the animation pipeline. ```python from PIL import Image, ImageSequence import os def gif_to_frames(gif_path, output_folder): # Open the GIF file gif = Image.open(gif_path) # Ensure the output folder exists if not os.path.exists(output_folder): os.makedirs(output_folder) # Iterate through each frame of the GIF for i, frame in enumerate(ImageSequence.Iterator(gif)): # Copy the frame frame_copy = frame.copy() # Save the frame to the specified folder frame_path = os.path.join(output_folder, f"frame_{i:04d}.png") frame_copy.save(frame_path) print(f"Successfully extracted {i + 1} frames to {output_folder}") # Example call gif_to_frames("girl-pose.gif", "girl_pose_frames") ``` ### Use this girl pose as pose source video (gif) ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/6oTdxQtI0nLGq2YB4KYTh.gif) ## Running the Script To run the script, follow these steps: 1. **Add the Script Path to System Path**: ```python import sys sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/") from animatediff_controlnet_sdxl import * from controlnet_aux.processor import Processor ``` 2. **Load Necessary Libraries and Models**: ```python import torch from diffusers.models import MotionAdapter from diffusers import DDIMScheduler from diffusers.utils import export_to_gif from diffusers import AutoPipelineForText2Image, ControlNetModel from diffusers.utils import load_image from PIL import Image ``` 3. **Load the MotionAdapter Model**: ```python adapter = MotionAdapter.from_pretrained( "a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16 ) ``` 4. **Configure the Scheduler and ControlNet**: ```python model_id = "svjack/GenshinImpact_XL_Base" scheduler = DDIMScheduler.from_pretrained( model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1, ) controlnet = ControlNetModel.from_pretrained( "thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16, ).to("cuda") ``` 5. **Load the AnimateDiffSDXLControlnetPipeline**: ```python pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained( model_id, controlnet=controlnet, motion_adapter=adapter, scheduler=scheduler, torch_dtype=torch.float16, ).to("cuda") ``` 6. **Enable Memory Saving Features**: ```python pipe.enable_vae_slicing() pipe.enable_vae_tiling() ``` 7. **Load Conditioning Frames**: ```python import os folder_path = "girl_pose_frames/" frames = os.listdir(folder_path) frames = list(filter(lambda x: x.endswith(".png"), frames)) frames.sort() conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path ,x)).resize((1024, 1024)), frames))[:16] ``` 8. **Process Conditioning Frames**: ```python p2 = Processor("openpose") cn2 = [p2(frame) for frame in conditioning_frames] ``` 9. **Define Prompts**: ```python prompt = ''' solo,Xiangling\(genshin impact\),1girl, full body professional photograph of a stunning detailed, sharp focus, dramatic cinematic lighting, octane render unreal engine (film grain, blurry background ''' prompt = "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed" negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly" ``` 10. **Generate Output**: (Use Genshin Impact character Xiangling) ```python prompt = ''' solo,Xiangling\(genshin impact\),1girl, full body professional photograph of a stunning detailed, sharp focus, dramatic cinematic lighting, octane render unreal engine (film grain, blurry background ''' prompt = "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed" #prompt = "solo,Xiangling\(genshin impact\),1girl" negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly" generator = torch.Generator(device="cpu").manual_seed(0) output = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=50, guidance_scale=20, controlnet_conditioning_scale = 1.0, width=512, height=768, num_frames=16, conditioning_frames=cn2, generator = generator ) ``` 11. **Export Frames to GIF**: ```python frames = output.frames[0] export_to_gif(frames, "xiangling_animation.gif") ``` 12. **Display the Result**: ```python from IPython import display display.Image("xiangling_animation.gif") ``` ### Target gif
Image 1
### Use Anime Upscale in https://github.com/svjack/APISR
Image 2
### Run in Command line - animatediff_controlnet_sdxl_run_script.py ```python import sys sys.path.insert(0, "diffusers-sdxl-controlnet/examples/community/") from animatediff_controlnet_sdxl import * import argparse from moviepy.editor import VideoFileClip, ImageSequenceClip import os import torch from diffusers.models import MotionAdapter from diffusers import DDIMScheduler, AutoPipelineForText2Image, ControlNetModel from diffusers.utils import export_to_gif from PIL import Image from controlnet_aux.processor import Processor # 初始化 MotionAdapter 和 ControlNetModel adapter = MotionAdapter.from_pretrained("a-r-r-o-w/animatediff-motion-adapter-sdxl-beta", torch_dtype=torch.float16) def initialize_pipeline(model_id): scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1) controlnet = ControlNetModel.from_pretrained("thibaud/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16).to("cuda") # 初始化 AnimateDiffSDXLControlnetPipeline pipe = AnimateDiffSDXLControlnetPipeline.from_pretrained( model_id, controlnet=controlnet, motion_adapter=adapter, scheduler=scheduler, torch_dtype=torch.float16, ).to("cuda") pipe.enable_vae_slicing() pipe.enable_vae_tiling() return pipe def split_video_into_frames(input_video_path, num_frames, temp_folder='temp_frames'): """ 将视频处理成指定帧数的视频,并保持原始的帧率。 :param input_video_path: 输入视频文件路径 :param num_frames: 目标帧数 :param temp_folder: 临时文件夹路径 """ clip = VideoFileClip(input_video_path) original_duration = clip.duration segment_duration = original_duration / num_frames if not os.path.exists(temp_folder): os.makedirs(temp_folder) for i in range(num_frames): frame_time = i * segment_duration frame_path = os.path.join(temp_folder, f'frame_{i:04d}.png') clip.save_frame(frame_path, t=frame_time) frame_paths = [os.path.join(temp_folder, f'frame_{i:04d}.png') for i in range(num_frames)] final_clip = ImageSequenceClip(frame_paths, fps=clip.fps) final_clip.write_videofile("resampled_video.mp4", codec='libx264') print(f"新的视频已保存到 resampled_video.mp4,包含 {num_frames} 个帧,并保持原始的帧率。") def generate_video_with_prompt(input_video_path, prompt, model_id, gif_output_path, seed=0, num_frames=16, keep_imgs=False, temp_folder='temp_frames'): """ 生成带有文本提示的视频。 :param input_video_path: 输入视频文件路径 :param prompt: 文本提示 :param model_id: 模型ID :param gif_output_path: GIF 输出文件路径 :param seed: 随机种子 :param num_frames: 目标帧数 :param keep_imgs: 是否保留临时图片 :param temp_folder: 临时文件夹路径 """ split_video_into_frames(input_video_path, num_frames, temp_folder) folder_path = temp_folder frames = os.listdir(folder_path) frames = list(filter(lambda x: x.endswith(".png"), frames)) frames.sort() conditioning_frames = list(map(lambda x: Image.open(os.path.join(folder_path, x)).resize((1024, 1024)), frames))[:num_frames] p2 = Processor("openpose") cn2 = [p2(frame) for frame in conditioning_frames] negative_prompt = "bad quality, worst quality, jpeg artifacts, ugly" generator = torch.Generator(device="cuda").manual_seed(seed) pipe = initialize_pipeline(model_id) output = pipe( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=50, guidance_scale=20, controlnet_conditioning_scale=1.0, width=512, height=768, num_frames=num_frames, conditioning_frames=cn2, generator=generator ) frames = output.frames[0] export_to_gif(frames, gif_output_path) print(f"生成的 GIF 已保存到 {gif_output_path}") if not keep_imgs: # 删除临时文件夹 import shutil shutil.rmtree(temp_folder) if __name__ == "__main__": parser = argparse.ArgumentParser(description="生成带有文本提示的视频") parser.add_argument("input_video", help="输入视频文件路径") parser.add_argument("prompt", help="文本提示") parser.add_argument("model_id", help="模型ID") parser.add_argument("gif_output_path", help="GIF 输出文件路径") parser.add_argument("--seed", type=int, default=0, help="随机种子") parser.add_argument("--num_frames", type=int, default=16, help="目标帧数") parser.add_argument("--keep_imgs", action="store_true", help="是否保留临时图片") parser.add_argument("--temp_folder", default='temp_frames', help="临时文件夹路径") args = parser.parse_args() generate_video_with_prompt(args.input_video, args.prompt, args.model_id, args.gif_output_path, args.seed, args.num_frames, args.keep_imgs, args.temp_folder) ``` ```bash python animatediff_controlnet_sdxl_run_script.py girl_beach.mp4 \ "solo,Xiangling\(genshin impact\),1girl,full body professional photograph of a stunning detailed, drink tea use chinese cup" \ "svjack/GenshinImpact_XL_Base" \ xiangling_tea_animation.gif --num_frames 16 --temp_folder temp_frames ``` - Pose: girl_beach.mp4 - Output: xiangling_tea_animation.gif ![image/gif](https://cdn-uploads.huggingface.co/production/uploads/634dffc49b777beec3bc6448/qUZOvGs5rzxN8zaZ4Xp3s.gif) - Upscaled: ## Conclusion This script demonstrates how to use the `diffusers-sdxl-controlnet` library to generate animated images with ControlNet and SDXL models. By following the steps outlined above, you can create and visualize your own animated sequences.