# Copyright 2024 HunyuanDiT Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect from typing import Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from transformers import BertModel, BertTokenizer, CLIPImageProcessor, MT5Tokenizer, T5EncoderModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from ...callbacks import MultiPipelineCallbacks, PipelineCallback from ...image_processor import VaeImageProcessor from ...models import AutoencoderKL, HunyuanDiT2DModel from ...models.embeddings import get_2d_rotary_pos_embed from ...pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from ...schedulers import DDPMScheduler from ...utils import ( is_torch_xla_available, logging, replace_example_docstring, ) from ...utils.torch_utils import randn_tensor from ..pipeline_utils import DiffusionPipeline if is_torch_xla_available(): import torch_xla.core.xla_model as xm XLA_AVAILABLE = True else: XLA_AVAILABLE = False logger = logging.get_logger(__name__) # pylint: disable=invalid-name EXAMPLE_DOC_STRING = """ Examples: ```py >>> import torch >>> from diffusers import HunyuanDiTPipeline >>> pipe = HunyuanDiTPipeline.from_pretrained( ... "Tencent-Hunyuan/HunyuanDiT-Diffusers", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> # You may also use English prompt as HunyuanDiT supports both English and Chinese >>> # prompt = "An astronaut riding a horse" >>> prompt = "一个宇航员在骑马" >>> image = pipe(prompt).images[0] ``` """ STANDARD_RATIO = np.array( [ 1.0, # 1:1 4.0 / 3.0, # 4:3 3.0 / 4.0, # 3:4 16.0 / 9.0, # 16:9 9.0 / 16.0, # 9:16 ] ) STANDARD_SHAPE = [ [(1024, 1024), (1280, 1280)], # 1:1 [(1024, 768), (1152, 864), (1280, 960)], # 4:3 [(768, 1024), (864, 1152), (960, 1280)], # 3:4 [(1280, 768)], # 16:9 [(768, 1280)], # 9:16 ] STANDARD_AREA = [np.array([w * h for w, h in shapes]) for shapes in STANDARD_SHAPE] SUPPORTED_SHAPE = [ (1024, 1024), (1280, 1280), # 1:1 (1024, 768), (1152, 864), (1280, 960), # 4:3 (768, 1024), (864, 1152), (960, 1280), # 3:4 (1280, 768), # 16:9 (768, 1280), # 9:16 ] def map_to_standard_shapes(target_width, target_height): target_ratio = target_width / target_height closest_ratio_idx = np.argmin(np.abs(STANDARD_RATIO - target_ratio)) closest_area_idx = np.argmin(np.abs(STANDARD_AREA[closest_ratio_idx] - target_width * target_height)) width, height = STANDARD_SHAPE[closest_ratio_idx][closest_area_idx] return width, height def get_resize_crop_region_for_grid(src, tgt_size): th = tw = tgt_size h, w = src r = h / w # resize if r > 1: resize_height = th resize_width = int(round(th / h * w)) else: resize_width = tw resize_height = int(round(tw / w * h)) crop_top = int(round((th - resize_height) / 2.0)) crop_left = int(round((tw - resize_width) / 2.0)) return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): """ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 """ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) # rescale the results from guidance (fixes overexposure) noise_pred_rescaled = noise_cfg * (std_text / std_cfg) # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg return noise_cfg class HunyuanDiTPipeline(DiffusionPipeline): r""" Pipeline for English/Chinese-to-image generation using HunyuanDiT. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) HunyuanDiT uses two text encoders: [mT5](https://huggingface.co/google/mt5-base) and [bilingual CLIP](fine-tuned by ourselves) Args: vae ([`AutoencoderKL`]): Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. We use `sdxl-vae-fp16-fix`. text_encoder (Optional[`~transformers.BertModel`, `~transformers.CLIPTextModel`]): Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). HunyuanDiT uses a fine-tuned [bilingual CLIP]. tokenizer (Optional[`~transformers.BertTokenizer`, `~transformers.CLIPTokenizer`]): A `BertTokenizer` or `CLIPTokenizer` to tokenize text. transformer ([`HunyuanDiT2DModel`]): The HunyuanDiT model designed by Tencent Hunyuan. text_encoder_2 (`T5EncoderModel`): The mT5 embedder. Specifically, it is 't5-v1_1-xxl'. tokenizer_2 (`MT5Tokenizer`): The tokenizer for the mT5 embedder. scheduler ([`DDPMScheduler`]): A scheduler to be used in combination with HunyuanDiT to denoise the encoded image latents. """ model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" _optional_components = [ "safety_checker", "feature_extractor", "text_encoder_2", "tokenizer_2", "text_encoder", "tokenizer", ] _exclude_from_cpu_offload = ["safety_checker"] _callback_tensor_inputs = [ "latents", "prompt_embeds", "negative_prompt_embeds", "prompt_embeds_2", "negative_prompt_embeds_2", ] def __init__( self, vae: AutoencoderKL, text_encoder: BertModel, tokenizer: BertTokenizer, transformer: HunyuanDiT2DModel, scheduler: DDPMScheduler, safety_checker: StableDiffusionSafetyChecker, feature_extractor: CLIPImageProcessor, requires_safety_checker: bool = True, text_encoder_2=T5EncoderModel, tokenizer_2=MT5Tokenizer, ): super().__init__() self.register_modules( vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, tokenizer_2=tokenizer_2, transformer=transformer, scheduler=scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, text_encoder_2=text_encoder_2, ) if safety_checker is None and requires_safety_checker: logger.warning( f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) if safety_checker is not None and feature_extractor is None: raise ValueError( "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." ) self.vae_scale_factor = ( 2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8 ) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) self.register_to_config(requires_safety_checker=requires_safety_checker) self.default_sample_size = ( self.transformer.config.sample_size if hasattr(self, "transformer") and self.transformer is not None else 128 ) def encode_prompt( self, prompt: str, device: torch.device = None, dtype: torch.dtype = None, num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Optional[str] = None, prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, max_sequence_length: Optional[int] = None, text_encoder_index: int = 0, ): r""" Encodes the prompt into text encoder hidden states. Args: prompt (`str` or `List[str]`, *optional*): prompt to be encoded device: (`torch.device`): torch device dtype (`torch.dtype`): torch dtype num_images_per_prompt (`int`): number of images that should be generated per prompt do_classifier_free_guidance (`bool`): whether to use classifier free guidance or not negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the prompt. Required when `prompt_embeds` is passed directly. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt. text_encoder_index (`int`, *optional*): Index of the text encoder to use. `0` for clip and `1` for T5. """ if dtype is None: if self.text_encoder_2 is not None: dtype = self.text_encoder_2.dtype elif self.transformer is not None: dtype = self.transformer.dtype else: dtype = None if device is None: device = self._execution_device tokenizers = [self.tokenizer, self.tokenizer_2] text_encoders = [self.text_encoder, self.text_encoder_2] tokenizer = tokenizers[text_encoder_index] text_encoder = text_encoders[text_encoder_index] if max_sequence_length is None: if text_encoder_index == 0: max_length = 77 if text_encoder_index == 1: max_length = 256 else: max_length = max_sequence_length if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] if prompt_embeds is None: text_inputs = tokenizer( prompt, padding="max_length", max_length=max_length, truncation=True, return_attention_mask=True, return_tensors="pt", ) text_input_ids = text_inputs.input_ids untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( text_input_ids, untruncated_ids ): removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {tokenizer.model_max_length} tokens: {removed_text}" ) prompt_attention_mask = text_inputs.attention_mask.to(device) prompt_embeds = text_encoder( text_input_ids.to(device), attention_mask=prompt_attention_mask, ) prompt_embeds = prompt_embeds[0] prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance and negative_prompt_embeds is None: uncond_tokens: List[str] if negative_prompt is None: uncond_tokens = [""] * batch_size elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" f" {type(prompt)}." ) elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] elif batch_size != len(negative_prompt): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: uncond_tokens = negative_prompt max_length = prompt_embeds.shape[1] uncond_input = tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="pt", ) negative_prompt_attention_mask = uncond_input.attention_mask.to(device) negative_prompt_embeds = text_encoder( uncond_input.input_ids.to(device), attention_mask=negative_prompt_attention_mask, ) negative_prompt_embeds = negative_prompt_embeds[0] negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1) if do_classifier_free_guidance: # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker def run_safety_checker(self, image, device, dtype): if self.safety_checker is None: has_nsfw_concept = None else: if torch.is_tensor(image): feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") else: feature_extractor_input = self.image_processor.numpy_to_pil(image) safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) image, has_nsfw_concept = self.safety_checker( images=image, clip_input=safety_checker_input.pixel_values.to(dtype) ) return image, has_nsfw_concept # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs def prepare_extra_step_kwargs(self, generator, eta): # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta # check if the scheduler accepts generator accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) if accepts_generator: extra_step_kwargs["generator"] = generator return extra_step_kwargs def check_inputs( self, prompt, height, width, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None, prompt_attention_mask=None, negative_prompt_attention_mask=None, prompt_embeds_2=None, negative_prompt_embeds_2=None, prompt_attention_mask_2=None, negative_prompt_attention_mask_2=None, callback_on_step_end_tensor_inputs=None, ): if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") if callback_on_step_end_tensor_inputs is not None and not all( k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs ): raise ValueError( f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" ) if prompt is not None and prompt_embeds is not None: raise ValueError( f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" " only forward one of the two." ) elif prompt is None and prompt_embeds is None: raise ValueError( "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." ) elif prompt is None and prompt_embeds_2 is None: raise ValueError( "Provide either `prompt` or `prompt_embeds_2`. Cannot leave both `prompt` and `prompt_embeds_2` undefined." ) elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") if prompt_embeds is not None and prompt_attention_mask is None: raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.") if prompt_embeds_2 is not None and prompt_attention_mask_2 is None: raise ValueError("Must provide `prompt_attention_mask_2` when specifying `prompt_embeds_2`.") if negative_prompt is not None and negative_prompt_embeds is not None: raise ValueError( f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" f" {negative_prompt_embeds}. Please make sure to only forward one of the two." ) if negative_prompt_embeds is not None and negative_prompt_attention_mask is None: raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.") if negative_prompt_embeds_2 is not None and negative_prompt_attention_mask_2 is None: raise ValueError( "Must provide `negative_prompt_attention_mask_2` when specifying `negative_prompt_embeds_2`." ) if prompt_embeds is not None and negative_prompt_embeds is not None: if prompt_embeds.shape != negative_prompt_embeds.shape: raise ValueError( "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" f" {negative_prompt_embeds.shape}." ) if prompt_embeds_2 is not None and negative_prompt_embeds_2 is not None: if prompt_embeds_2.shape != negative_prompt_embeds_2.shape: raise ValueError( "`prompt_embeds_2` and `negative_prompt_embeds_2` must have the same shape when passed directly, but" f" got: `prompt_embeds_2` {prompt_embeds_2.shape} != `negative_prompt_embeds_2`" f" {negative_prompt_embeds_2.shape}." ) # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): shape = ( batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) else: latents = latents.to(device) # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents @property def guidance_scale(self): return self._guidance_scale @property def guidance_rescale(self): return self._guidance_rescale # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. @property def do_classifier_free_guidance(self): return self._guidance_scale > 1 @property def num_timesteps(self): return self._num_timesteps @property def interrupt(self): return self._interrupt @torch.no_grad() @replace_example_docstring(EXAMPLE_DOC_STRING) def __call__( self, prompt: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: Optional[int] = 50, guidance_scale: Optional[float] = 5.0, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: Optional[float] = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.Tensor] = None, prompt_embeds: Optional[torch.Tensor] = None, prompt_embeds_2: Optional[torch.Tensor] = None, negative_prompt_embeds: Optional[torch.Tensor] = None, negative_prompt_embeds_2: Optional[torch.Tensor] = None, prompt_attention_mask: Optional[torch.Tensor] = None, prompt_attention_mask_2: Optional[torch.Tensor] = None, negative_prompt_attention_mask: Optional[torch.Tensor] = None, negative_prompt_attention_mask_2: Optional[torch.Tensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback_on_step_end: Optional[ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] ] = None, callback_on_step_end_tensor_inputs: List[str] = ["latents"], guidance_rescale: float = 0.0, original_size: Optional[Tuple[int, int]] = (1024, 1024), target_size: Optional[Tuple[int, int]] = None, crops_coords_top_left: Tuple[int, int] = (0, 0), use_resolution_binning: bool = True, ): r""" The call function to the pipeline for generation with HunyuanDiT. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. height (`int`): The height in pixels of the generated image. width (`int`): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. This parameter is modulated by `strength`. guidance_scale (`float`, *optional*, defaults to 7.5): A higher guidance scale value encourages the model to generate images closely linked to the text `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. prompt_embeds (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. prompt_embeds_2 (`torch.Tensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the `prompt` input argument. negative_prompt_embeds (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. negative_prompt_embeds_2 (`torch.Tensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the prompt. Required when `prompt_embeds` is passed directly. prompt_attention_mask_2 (`torch.Tensor`, *optional*): Attention mask for the prompt. Required when `prompt_embeds_2` is passed directly. negative_prompt_attention_mask (`torch.Tensor`, *optional*): Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly. negative_prompt_attention_mask_2 (`torch.Tensor`, *optional*): Attention mask for the negative prompt. Required when `negative_prompt_embeds_2` is passed directly. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback_on_step_end (`Callable[[int, int, Dict], None]`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): A callback function or a list of callback functions to be called at the end of each denoising step. callback_on_step_end_tensor_inputs (`List[str]`, *optional*): A list of tensor inputs that should be passed to the callback function. If not defined, all tensor inputs will be passed. guidance_rescale (`float`, *optional*, defaults to 0.0): Rescale the noise_cfg according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 original_size (`Tuple[int, int]`, *optional*, defaults to `(1024, 1024)`): The original size of the image. Used to calculate the time ids. target_size (`Tuple[int, int]`, *optional*): The target size of the image. Used to calculate the time ids. crops_coords_top_left (`Tuple[int, int]`, *optional*, defaults to `(0, 0)`): The top left coordinates of the crop. Used to calculate the time ids. use_resolution_binning (`bool`, *optional*, defaults to `True`): Whether to use resolution binning or not. If `True`, the input resolution will be mapped to the closest standard resolution. Supported resolutions are 1024x1024, 1280x1280, 1024x768, 1152x864, 1280x960, 768x1024, 864x1152, 960x1280, 1280x768, and 768x1280. It is recommended to set this to `True`. Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images and the second element is a list of `bool`s indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content. """ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs # 0. default height and width height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor height = int((height // 16) * 16) width = int((width // 16) * 16) if use_resolution_binning and (height, width) not in SUPPORTED_SHAPE: width, height = map_to_standard_shapes(width, height) height = int(height) width = int(width) logger.warning(f"Reshaped to (height, width)=({height}, {width}), Supported shapes are {SUPPORTED_SHAPE}") # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2, callback_on_step_end_tensor_inputs, ) self._guidance_scale = guidance_scale self._guidance_rescale = guidance_rescale self._interrupt = False # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # 3. Encode input prompt ( prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask, ) = self.encode_prompt( prompt=prompt, device=device, dtype=self.transformer.dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, prompt_attention_mask=prompt_attention_mask, negative_prompt_attention_mask=negative_prompt_attention_mask, max_sequence_length=77, text_encoder_index=0, ) ( prompt_embeds_2, negative_prompt_embeds_2, prompt_attention_mask_2, negative_prompt_attention_mask_2, ) = self.encode_prompt( prompt=prompt, device=device, dtype=self.transformer.dtype, num_images_per_prompt=num_images_per_prompt, do_classifier_free_guidance=self.do_classifier_free_guidance, negative_prompt=negative_prompt, prompt_embeds=prompt_embeds_2, negative_prompt_embeds=negative_prompt_embeds_2, prompt_attention_mask=prompt_attention_mask_2, negative_prompt_attention_mask=negative_prompt_attention_mask_2, max_sequence_length=256, text_encoder_index=1, ) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.transformer.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7 create image_rotary_emb, style embedding & time ids grid_height = height // 8 // self.transformer.config.patch_size grid_width = width // 8 // self.transformer.config.patch_size base_size = 512 // 8 // self.transformer.config.patch_size grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size) image_rotary_emb = get_2d_rotary_pos_embed( self.transformer.inner_dim // self.transformer.num_heads, grid_crops_coords, (grid_height, grid_width) ) style = torch.tensor([0], device=device) target_size = target_size or (height, width) add_time_ids = list(original_size + target_size + crops_coords_top_left) add_time_ids = torch.tensor([add_time_ids], dtype=prompt_embeds.dtype) if self.do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask]) prompt_embeds_2 = torch.cat([negative_prompt_embeds_2, prompt_embeds_2]) prompt_attention_mask_2 = torch.cat([negative_prompt_attention_mask_2, prompt_attention_mask_2]) add_time_ids = torch.cat([add_time_ids] * 2, dim=0) style = torch.cat([style] * 2, dim=0) prompt_embeds = prompt_embeds.to(device=device) prompt_attention_mask = prompt_attention_mask.to(device=device) prompt_embeds_2 = prompt_embeds_2.to(device=device) prompt_attention_mask_2 = prompt_attention_mask_2.to(device=device) add_time_ids = add_time_ids.to(dtype=prompt_embeds.dtype, device=device).repeat( batch_size * num_images_per_prompt, 1 ) style = style.to(device=device).repeat(batch_size * num_images_per_prompt) # 8. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order self._num_timesteps = len(timesteps) with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if self.interrupt: continue # expand the latents if we are doing classifier free guidance latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to( dtype=latent_model_input.dtype ) # predict the noise residual noise_pred = self.transformer( latent_model_input, t_expand, encoder_hidden_states=prompt_embeds, text_embedding_mask=prompt_attention_mask, encoder_hidden_states_t5=prompt_embeds_2, text_embedding_mask_t5=prompt_attention_mask_2, image_meta_size=add_time_ids, style=style, image_rotary_emb=image_rotary_emb, return_dict=False, )[0] noise_pred, _ = noise_pred.chunk(2, dim=1) # perform guidance if self.do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) if self.do_classifier_free_guidance and guidance_rescale > 0.0: # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] if callback_on_step_end is not None: callback_kwargs = {} for k in callback_on_step_end_tensor_inputs: callback_kwargs[k] = locals()[k] callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) latents = callback_outputs.pop("latents", latents) prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) prompt_embeds_2 = callback_outputs.pop("prompt_embeds_2", prompt_embeds_2) negative_prompt_embeds_2 = callback_outputs.pop( "negative_prompt_embeds_2", negative_prompt_embeds_2 ) if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): progress_bar.update() if XLA_AVAILABLE: xm.mark_step() if not output_type == "latent": image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) else: image = latents has_nsfw_concept = None if has_nsfw_concept is None: do_denormalize = [True] * image.shape[0] else: do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) # Offload all models self.maybe_free_model_hooks() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)