# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities to dynamically load objects from the Hub.""" import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import hf_hub_download, model_info from huggingface_hub.utils import RevisionNotFoundError, validate_hf_hub_args from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging logger = logging.get_logger(__name__) # pylint: disable=invalid-name # See https://huggingface.co/datasets/diffusers/community-pipelines-mirror COMMUNITY_PIPELINES_MIRROR_ID = "diffusers/community-pipelines-mirror" def get_diffusers_versions(): url = "https://pypi.org/pypi/diffusers/json" releases = json.loads(request.urlopen(url).read())["releases"].keys() return sorted(releases, key=lambda x: version.Version(x)) def init_hf_modules(): """ Creates the cache directory for modules with an init, and adds it to the Python path. """ # This function has already been executed if HF_MODULES_CACHE already is in the Python path. if HF_MODULES_CACHE in sys.path: return sys.path.append(HF_MODULES_CACHE) os.makedirs(HF_MODULES_CACHE, exist_ok=True) init_path = Path(HF_MODULES_CACHE) / "__init__.py" if not init_path.exists(): init_path.touch() def create_dynamic_module(name: Union[str, os.PathLike]): """ Creates a dynamic module in the cache directory for modules. """ init_hf_modules() dynamic_module_path = Path(HF_MODULES_CACHE) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent) os.makedirs(dynamic_module_path, exist_ok=True) init_path = dynamic_module_path / "__init__.py" if not init_path.exists(): init_path.touch() def get_relative_imports(module_file): """ Get the list of modules that are relatively imported in a module file. Args: module_file (`str` or `os.PathLike`): The module file to inspect. """ with open(module_file, "r", encoding="utf-8") as f: content = f.read() # Imports of the form `import .xxx` relative_imports = re.findall(r"^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE) # Imports of the form `from .xxx import yyy` relative_imports += re.findall(r"^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE) # Unique-ify return list(set(relative_imports)) def get_relative_import_files(module_file): """ Get the list of all files that are needed for a given module. Note that this function recurses through the relative imports (if a imports b and b imports c, it will return module files for b and c). Args: module_file (`str` or `os.PathLike`): The module file to inspect. """ no_change = False files_to_check = [module_file] all_relative_imports = [] # Let's recurse through all relative imports while not no_change: new_imports = [] for f in files_to_check: new_imports.extend(get_relative_imports(f)) module_path = Path(module_file).parent new_import_files = [str(module_path / m) for m in new_imports] new_import_files = [f for f in new_import_files if f not in all_relative_imports] files_to_check = [f"{f}.py" for f in new_import_files] no_change = len(new_import_files) == 0 all_relative_imports.extend(files_to_check) return all_relative_imports def check_imports(filename): """ Check if the current Python environment contains all the libraries that are imported in a file. """ with open(filename, "r", encoding="utf-8") as f: content = f.read() # Imports of the form `import xxx` imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE) # Imports of the form `from xxx import yyy` imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE) # Only keep the top-level module imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")] # Unique-ify and test we got them all imports = list(set(imports)) missing_packages = [] for imp in imports: try: importlib.import_module(imp) except ImportError: missing_packages.append(imp) if len(missing_packages) > 0: raise ImportError( "This modeling file requires the following packages that were not found in your environment: " f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`" ) return get_relative_imports(filename) def get_class_in_module(class_name, module_path): """ Import a module on the cache directory for modules and extract a class from it. """ module_path = module_path.replace(os.path.sep, ".") module = importlib.import_module(module_path) if class_name is None: return find_pipeline_class(module) return getattr(module, class_name) def find_pipeline_class(loaded_module): """ Retrieve pipeline class that inherits from `DiffusionPipeline`. Note that there has to be exactly one class inheriting from `DiffusionPipeline`. """ from ..pipelines import DiffusionPipeline cls_members = dict(inspect.getmembers(loaded_module, inspect.isclass)) pipeline_class = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls, DiffusionPipeline) and cls.__module__.split(".")[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:" f" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in" f" {loaded_module}." ) pipeline_class = cls return pipeline_class @validate_hf_hub_args def get_cached_module_file( pretrained_model_name_or_path: Union[str, os.PathLike], module_file: str, cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: Optional[bool] = None, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, ): """ Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached Transformers module. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - a path to a *directory* containing a configuration file saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. module_file (`str`): The name of the module file containing the class to look for. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 of Diffusers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or *bool*, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `transformers-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the tokenizer configuration from local files. You may pass a token in `token` if you are not logged in (`huggingface-cli login`) and want to use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models). Returns: `str`: The path to the module inside the cache. """ # Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file. pretrained_model_name_or_path = str(pretrained_model_name_or_path) module_file_or_url = os.path.join(pretrained_model_name_or_path, module_file) if os.path.isfile(module_file_or_url): resolved_module_file = module_file_or_url submodule = "local" elif pretrained_model_name_or_path.count("/") == 0: available_versions = get_diffusers_versions() # cut ".dev0" latest_version = "v" + ".".join(__version__.split(".")[:3]) # retrieve github version that matches if revision is None: revision = latest_version if latest_version[1:] in available_versions else "main" logger.info(f"Defaulting to latest_version: {revision}.") elif revision in available_versions: revision = f"v{revision}" elif revision == "main": revision = revision else: raise ValueError( f"`custom_revision`: {revision} does not exist. Please make sure to choose one of" f" {', '.join(available_versions + ['main'])}." ) try: resolved_module_file = hf_hub_download( repo_id=COMMUNITY_PIPELINES_MIRROR_ID, repo_type="dataset", filename=f"{revision}/{pretrained_model_name_or_path}.py", cache_dir=cache_dir, force_download=force_download, proxies=proxies, local_files_only=local_files_only, ) submodule = "git" module_file = pretrained_model_name_or_path + ".py" except RevisionNotFoundError as e: raise EnvironmentError( f"Revision '{revision}' not found in the community pipelines mirror. Check available revisions on" " https://huggingface.co/datasets/diffusers/community-pipelines-mirror/tree/main." " If you don't find the revision you are looking for, please open an issue on https://github.com/huggingface/diffusers/issues." ) from e except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.") raise else: try: # Load from URL or cache if already cached resolved_module_file = hf_hub_download( pretrained_model_name_or_path, module_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, ) submodule = os.path.join("local", "--".join(pretrained_model_name_or_path.split("/"))) except EnvironmentError: logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.") raise # Check we have all the requirements in our environment modules_needed = check_imports(resolved_module_file) # Now we move the module inside our cached dynamic modules. full_submodule = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(full_submodule) submodule_path = Path(HF_MODULES_CACHE) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(resolved_module_file, submodule_path / module_file) for module_needed in modules_needed: if len(module_needed.split(".")) == 2: module_needed = "/".join(module_needed.split(".")) module_folder = module_needed.split("/")[0] if not os.path.exists(submodule_path / module_folder): os.makedirs(submodule_path / module_folder) module_needed = f"{module_needed}.py" shutil.copy(os.path.join(pretrained_model_name_or_path, module_needed), submodule_path / module_needed) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. commit_hash = model_info(pretrained_model_name_or_path, revision=revision, token=token).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. submodule_path = submodule_path / commit_hash full_submodule = full_submodule + os.path.sep + commit_hash create_dynamic_module(full_submodule) if not (submodule_path / module_file).exists(): if len(module_file.split("/")) == 2: module_folder = module_file.split("/")[0] if not os.path.exists(submodule_path / module_folder): os.makedirs(submodule_path / module_folder) shutil.copy(resolved_module_file, submodule_path / module_file) # Make sure we also have every file with relative for module_needed in modules_needed: if len(module_needed.split(".")) == 2: module_needed = "/".join(module_needed.split(".")) if not (submodule_path / module_needed).exists(): get_cached_module_file( pretrained_model_name_or_path, f"{module_needed}.py", cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, ) return os.path.join(full_submodule, module_file) @validate_hf_hub_args def get_class_from_dynamic_module( pretrained_model_name_or_path: Union[str, os.PathLike], module_file: str, class_name: Optional[str] = None, cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, resume_download: Optional[bool] = None, proxies: Optional[Dict[str, str]] = None, token: Optional[Union[bool, str]] = None, revision: Optional[str] = None, local_files_only: bool = False, **kwargs, ): """ Extracts a class from a module file, present in the local folder or repository of a model. Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should therefore only be called on trusted repos. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained model configuration hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - a path to a *directory* containing a configuration file saved using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. module_file (`str`): The name of the module file containing the class to look for. class_name (`str`): The name of the class to import in the module. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v1 of Diffusers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `transformers-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. local_files_only (`bool`, *optional*, defaults to `False`): If `True`, will only try to load the tokenizer configuration from local files. You may pass a token in `token` if you are not logged in (`huggingface-cli login`) and want to use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models). Returns: `type`: The class, dynamically imported from the module. Examples: ```python # Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this # module. cls = get_class_from_dynamic_module("sgugger/my-bert-model", "modeling.py", "MyBertModel") ```""" # And lastly we get the class inside our newly created module final_module = get_cached_module_file( pretrained_model_name_or_path, module_file, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, proxies=proxies, token=token, revision=revision, local_files_only=local_files_only, ) return get_class_in_module(class_name, final_module.replace(".py", ""))