# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from parameterized import parameterized from diffusers import ( AsymmetricAutoencoderKL, AutoencoderKL, AutoencoderKLTemporalDecoder, AutoencoderTiny, ConsistencyDecoderVAE, StableDiffusionPipeline, ) from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.loading_utils import load_image from diffusers.utils.testing_utils import ( backend_empty_cache, enable_full_determinism, floats_tensor, load_hf_numpy, require_torch_accelerator, require_torch_accelerator_with_fp16, require_torch_accelerator_with_training, require_torch_gpu, skip_mps, slow, torch_all_close, torch_device, ) from diffusers.utils.torch_utils import randn_tensor from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() def get_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None): block_out_channels = block_out_channels or [2, 4] norm_num_groups = norm_num_groups or 2 init_dict = { "block_out_channels": block_out_channels, "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels), "latent_channels": 4, "norm_num_groups": norm_num_groups, } return init_dict def get_asym_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None): block_out_channels = block_out_channels or [2, 4] norm_num_groups = norm_num_groups or 2 init_dict = { "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), "down_block_out_channels": block_out_channels, "layers_per_down_block": 1, "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels), "up_block_out_channels": block_out_channels, "layers_per_up_block": 1, "act_fn": "silu", "latent_channels": 4, "norm_num_groups": norm_num_groups, "sample_size": 32, "scaling_factor": 0.18215, } return init_dict def get_autoencoder_tiny_config(block_out_channels=None): block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32] init_dict = { "in_channels": 3, "out_channels": 3, "encoder_block_out_channels": block_out_channels, "decoder_block_out_channels": block_out_channels, "num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels], "num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)], } return init_dict def get_consistency_vae_config(block_out_channels=None, norm_num_groups=None): block_out_channels = block_out_channels or [2, 4] norm_num_groups = norm_num_groups or 2 return { "encoder_block_out_channels": block_out_channels, "encoder_in_channels": 3, "encoder_out_channels": 4, "encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), "decoder_add_attention": False, "decoder_block_out_channels": block_out_channels, "decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels), "decoder_downsample_padding": 1, "decoder_in_channels": 7, "decoder_layers_per_block": 1, "decoder_norm_eps": 1e-05, "decoder_norm_num_groups": norm_num_groups, "encoder_norm_num_groups": norm_num_groups, "decoder_num_train_timesteps": 1024, "decoder_out_channels": 6, "decoder_resnet_time_scale_shift": "scale_shift", "decoder_time_embedding_type": "learned", "decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels), "scaling_factor": 1, "latent_channels": 4, } class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AutoencoderKL main_input_name = "sample" base_precision = 1e-2 @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = get_autoencoder_kl_config() inputs_dict = self.dummy_input return init_dict, inputs_dict def test_forward_signature(self): pass def test_training(self): pass @require_torch_accelerator_with_training def test_gradient_checkpointing(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) assert not model.is_gradient_checkpointing and model.training out = model(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() labels = torch.randn_like(out) loss = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing model_2 = self.model_class(**init_dict) # clone model model_2.load_state_dict(model.state_dict()) model_2.to(torch_device) model_2.enable_gradient_checkpointing() assert model_2.is_gradient_checkpointing and model_2.training out_2 = model_2(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_2.zero_grad() loss_2 = (out_2 - labels).mean() loss_2.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_2).abs() < 1e-5) named_params = dict(model.named_parameters()) named_params_2 = dict(model_2.named_parameters()) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) def test_from_pretrained_hub(self): model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy") model = model.to(torch_device) model.eval() # Keep generator on CPU for non-CUDA devices to compare outputs with CPU result tensors generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" if torch_device != "mps": generator = torch.Generator(device=generator_device).manual_seed(0) else: generator = torch.manual_seed(0) image = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0), ) image = image.to(torch_device) with torch.no_grad(): output = model(image, sample_posterior=True, generator=generator).sample output_slice = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": expected_output_slice = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif generator_device == "cpu": expected_output_slice = torch.tensor( [ -0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026, ] ) else: expected_output_slice = torch.tensor( [ -0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485, ] ) self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase): model_class = AsymmetricAutoencoderKL main_input_name = "sample" base_precision = 1e-2 @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) mask = torch.ones((batch_size, 1) + sizes).to(torch_device) return {"sample": image, "mask": mask} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = get_asym_autoencoder_kl_config() inputs_dict = self.dummy_input return init_dict, inputs_dict def test_forward_signature(self): pass def test_forward_with_norm_groups(self): pass class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase): model_class = AutoencoderTiny main_input_name = "sample" base_precision = 1e-2 @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = get_autoencoder_tiny_config() inputs_dict = self.dummy_input return init_dict, inputs_dict def test_outputs_equivalence(self): pass class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase): model_class = ConsistencyDecoderVAE main_input_name = "sample" base_precision = 1e-2 forward_requires_fresh_args = True def inputs_dict(self, seed=None): generator = torch.Generator("cpu") if seed is not None: generator.manual_seed(0) image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device)) return {"sample": image, "generator": generator} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) @property def init_dict(self): return get_consistency_vae_config() def prepare_init_args_and_inputs_for_common(self): return self.init_dict, self.inputs_dict() @unittest.skip def test_training(self): ... @unittest.skip def test_ema_training(self): ... class AutoencoderKLTemporalDecoderFastTests(ModelTesterMixin, unittest.TestCase): model_class = AutoencoderKLTemporalDecoder main_input_name = "sample" base_precision = 1e-2 @property def dummy_input(self): batch_size = 3 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) num_frames = 3 return {"sample": image, "num_frames": num_frames} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "latent_channels": 4, "layers_per_block": 2, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_forward_signature(self): pass def test_training(self): pass @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS") def test_gradient_checkpointing(self): # enable deterministic behavior for gradient checkpointing init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) assert not model.is_gradient_checkpointing and model.training out = model(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() labels = torch.randn_like(out) loss = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing model_2 = self.model_class(**init_dict) # clone model model_2.load_state_dict(model.state_dict()) model_2.to(torch_device) model_2.enable_gradient_checkpointing() assert model_2.is_gradient_checkpointing and model_2.training out_2 = model_2(**inputs_dict).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_2.zero_grad() loss_2 = (out_2 - labels).mean() loss_2.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_2).abs() < 1e-5) named_params = dict(model.named_parameters()) named_params_2 = dict(model_2.named_parameters()) for name, param in named_params.items(): if "post_quant_conv" in name: continue self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5)) @slow class AutoencoderTinyIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False): torch_dtype = torch.float16 if fp16 else torch.float32 model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype) model.to(torch_device).eval() return model @parameterized.expand( [ [(1, 4, 73, 97), (1, 3, 584, 776)], [(1, 4, 97, 73), (1, 3, 776, 584)], [(1, 4, 49, 65), (1, 3, 392, 520)], [(1, 4, 65, 49), (1, 3, 520, 392)], [(1, 4, 49, 49), (1, 3, 392, 392)], ] ) def test_tae_tiling(self, in_shape, out_shape): model = self.get_sd_vae_model() model.enable_tiling() with torch.no_grad(): zeros = torch.zeros(in_shape).to(torch_device) dec = model.decode(zeros).sample assert dec.shape == out_shape def test_stable_diffusion(self): model = self.get_sd_vae_model() image = self.get_sd_image(seed=33) with torch.no_grad(): sample = model(image).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382]) assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) @parameterized.expand([(True,), (False,)]) def test_tae_roundtrip(self, enable_tiling): # load the autoencoder model = self.get_sd_vae_model() if enable_tiling: model.enable_tiling() # make a black image with a white square in the middle, # which is large enough to split across multiple tiles image = -torch.ones(1, 3, 1024, 1024, device=torch_device) image[..., 256:768, 256:768] = 1.0 # round-trip the image through the autoencoder with torch.no_grad(): sample = model(image).sample # the autoencoder reconstruction should match original image, sorta def downscale(x): return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor) assert torch_all_close(downscale(sample), downscale(image), atol=0.125) @slow class AutoencoderKLIntegrationTests(unittest.TestCase): def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False): revision = "fp16" if fp16 else None torch_dtype = torch.float16 if fp16 else torch.float32 model = AutoencoderKL.from_pretrained( model_id, subfolder="vae", torch_dtype=torch_dtype, revision=revision, ) model.to(torch_device) return model def get_generator(self, seed=0): generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" if torch_device != "mps": return torch.Generator(device=generator_device).manual_seed(seed) return torch.manual_seed(seed) @parameterized.expand( [ # fmt: off [ 33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824], ], [ 47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131], ], # fmt: on ] ) def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps): model = self.get_sd_vae_model() image = self.get_sd_image(seed) generator = self.get_generator(seed) with torch.no_grad(): sample = model(image, generator=generator, sample_posterior=True).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_accelerator_with_fp16 def test_stable_diffusion_fp16(self, seed, expected_slice): model = self.get_sd_vae_model(fp16=True) image = self.get_sd_image(seed, fp16=True) generator = self.get_generator(seed) with torch.no_grad(): sample = model(image, generator=generator, sample_posterior=True).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-2) @parameterized.expand( [ # fmt: off [ 33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824], ], [ 47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131], ], # fmt: on ] ) def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps): model = self.get_sd_vae_model() image = self.get_sd_image(seed) with torch.no_grad(): sample = model(image).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_accelerator @skip_mps def test_stable_diffusion_decode(self, seed, expected_slice): model = self.get_sd_vae_model() encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) with torch.no_grad(): sample = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_accelerator_with_fp16 def test_stable_diffusion_decode_fp16(self, seed, expected_slice): model = self.get_sd_vae_model(fp16=True) encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) with torch.no_grad(): sample = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand([(13,), (16,), (27,)]) @require_torch_gpu @unittest.skipIf( not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.", ) def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed): model = self.get_sd_vae_model(fp16=True) encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) with torch.no_grad(): sample = model.decode(encoding).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): sample_2 = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] assert torch_all_close(sample, sample_2, atol=1e-1) @parameterized.expand([(13,), (16,), (37,)]) @require_torch_gpu @unittest.skipIf( not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.", ) def test_stable_diffusion_decode_xformers_vs_2_0(self, seed): model = self.get_sd_vae_model() encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) with torch.no_grad(): sample = model.decode(encoding).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): sample_2 = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] assert torch_all_close(sample, sample_2, atol=1e-2) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def test_stable_diffusion_encode_sample(self, seed, expected_slice): model = self.get_sd_vae_model() image = self.get_sd_image(seed) generator = self.get_generator(seed) with torch.no_grad(): dist = model.encode(image).latent_dist sample = dist.sample(generator=generator) assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] output_slice = sample[0, -1, -3:, -3:].flatten().cpu() expected_output_slice = torch.tensor(expected_slice) tolerance = 3e-3 if torch_device != "mps" else 1e-2 assert torch_all_close(output_slice, expected_output_slice, atol=tolerance) @slow class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase): def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() backend_empty_cache(torch_device) def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False): revision = "main" torch_dtype = torch.float32 model = AsymmetricAutoencoderKL.from_pretrained( model_id, torch_dtype=torch_dtype, revision=revision, ) model.to(torch_device).eval() return model def get_generator(self, seed=0): generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda" if torch_device != "mps": return torch.Generator(device=generator_device).manual_seed(seed) return torch.manual_seed(seed) @parameterized.expand( [ # fmt: off [ 33, [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078], [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], ], [ 47, [0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529], [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], ], # fmt: on ] ) def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps): model = self.get_sd_vae_model() image = self.get_sd_image(seed) generator = self.get_generator(seed) with torch.no_grad(): sample = model(image, generator=generator, sample_posterior=True).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand( [ # fmt: off [ 33, [-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097], [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078], ], [ 47, [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531], [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531], ], # fmt: on ] ) def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps): model = self.get_sd_vae_model() image = self.get_sd_image(seed) with torch.no_grad(): sample = model(image).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=3e-3) @parameterized.expand( [ # fmt: off [13, [-0.0521, -0.2939, 0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]], [37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]], # fmt: on ] ) @require_torch_accelerator @skip_mps def test_stable_diffusion_decode(self, seed, expected_slice): model = self.get_sd_vae_model() encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) with torch.no_grad(): sample = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=2e-3) @parameterized.expand([(13,), (16,), (37,)]) @require_torch_gpu @unittest.skipIf( not is_xformers_available(), reason="xformers is not required when using PyTorch 2.0.", ) def test_stable_diffusion_decode_xformers_vs_2_0(self, seed): model = self.get_sd_vae_model() encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) with torch.no_grad(): sample = model.decode(encoding).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): sample_2 = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] assert torch_all_close(sample, sample_2, atol=5e-2) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def test_stable_diffusion_encode_sample(self, seed, expected_slice): model = self.get_sd_vae_model() image = self.get_sd_image(seed) generator = self.get_generator(seed) with torch.no_grad(): dist = model.encode(image).latent_dist sample = dist.sample(generator=generator) assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] output_slice = sample[0, -1, -3:, -3:].flatten().cpu() expected_output_slice = torch.tensor(expected_slice) tolerance = 3e-3 if torch_device != "mps" else 1e-2 assert torch_all_close(output_slice, expected_output_slice, atol=tolerance) @slow class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase): def setUp(self): # clean up the VRAM before each test super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @torch.no_grad() def test_encode_decode(self): vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update vae.to(torch_device) image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ).resize((256, 256)) image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[ None, :, :, : ].cuda() latent = vae.encode(image).latent_dist.mean sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample actual_output = sample[0, :2, :2, :2].flatten().cpu() expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024]) assert torch_all_close(actual_output, expected_output, atol=5e-3) def test_sd(self): vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None) pipe.to(torch_device) out = pipe( "horse", num_inference_steps=2, output_type="pt", generator=torch.Generator("cpu").manual_seed(0), ).images[0] actual_output = out[:2, :2, :2].flatten().cpu() expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759]) assert torch_all_close(actual_output, expected_output, atol=5e-3) def test_encode_decode_f16(self): vae = ConsistencyDecoderVAE.from_pretrained( "openai/consistency-decoder", torch_dtype=torch.float16 ) # TODO - update vae.to(torch_device) image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ).resize((256, 256)) image = ( torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :] .half() .cuda() ) latent = vae.encode(image).latent_dist.mean sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample actual_output = sample[0, :2, :2, :2].flatten().cpu() expected_output = torch.tensor( [-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471], dtype=torch.float16, ) assert torch_all_close(actual_output, expected_output, atol=5e-3) def test_sd_f16(self): vae = ConsistencyDecoderVAE.from_pretrained( "openai/consistency-decoder", torch_dtype=torch.float16 ) # TODO - update pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16, vae=vae, safety_checker=None, ) pipe.to(torch_device) out = pipe( "horse", num_inference_steps=2, output_type="pt", generator=torch.Generator("cpu").manual_seed(0), ).images[0] actual_output = out[:2, :2, :2].flatten().cpu() expected_output = torch.tensor( [0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035], dtype=torch.float16, ) assert torch_all_close(actual_output, expected_output, atol=5e-3) def test_vae_tiling(self): vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16 ) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) out_1 = pipe( "horse", num_inference_steps=2, output_type="pt", generator=torch.Generator("cpu").manual_seed(0), ).images[0] # make sure tiled vae decode yields the same result pipe.enable_vae_tiling() out_2 = pipe( "horse", num_inference_steps=2, output_type="pt", generator=torch.Generator("cpu").manual_seed(0), ).images[0] assert torch_all_close(out_1, out_2, atol=5e-3) # test that tiled decode works with various shapes shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] with torch.no_grad(): for shape in shapes: image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype) pipe.vae.decode(image)