import argparse import sys import tensorrt as trt def convert_models(onnx_path: str, num_controlnet: int, output_path: str, fp16: bool = False, sd_xl: bool = False): """ Function to convert models in stable diffusion controlnet pipeline into TensorRT format Example: python convert_stable_diffusion_controlnet_to_tensorrt.py --onnx_path path-to-models-stable_diffusion/RevAnimated-v1-2-2/unet/model.onnx --output_path path-to-models-stable_diffusion/RevAnimated-v1-2-2/unet/model.engine --fp16 --num_controlnet 2 Example for SD XL: python convert_stable_diffusion_controlnet_to_tensorrt.py --onnx_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0/unet/model.onnx --output_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0/unet/model.engine --fp16 --num_controlnet 1 --sd_xl Returns: unet/model.engine run test script in diffusers/examples/community python test_onnx_controlnet.py --sd_model danbrown/RevAnimated-v1-2-2 --onnx_model_dir path-to-models-stable_diffusion/RevAnimated-v1-2-2 --unet_engine_path path-to-models-stable_diffusion/stable-diffusion-xl-base-1.0/unet/model.engine --qr_img_path path-to-qr-code-image """ # UNET if sd_xl: batch_size = 1 unet_in_channels = 4 unet_sample_size = 64 num_tokens = 77 text_hidden_size = 2048 img_size = 512 text_embeds_shape = (2 * batch_size, 1280) time_ids_shape = (2 * batch_size, 6) else: batch_size = 1 unet_in_channels = 4 unet_sample_size = 64 num_tokens = 77 text_hidden_size = 768 img_size = 512 batch_size = 1 latents_shape = (2 * batch_size, unet_in_channels, unet_sample_size, unet_sample_size) embed_shape = (2 * batch_size, num_tokens, text_hidden_size) controlnet_conds_shape = (num_controlnet, 2 * batch_size, 3, img_size, img_size) TRT_LOGGER = trt.Logger(trt.Logger.VERBOSE) TRT_BUILDER = trt.Builder(TRT_LOGGER) TRT_RUNTIME = trt.Runtime(TRT_LOGGER) network = TRT_BUILDER.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)) onnx_parser = trt.OnnxParser(network, TRT_LOGGER) parse_success = onnx_parser.parse_from_file(onnx_path) for idx in range(onnx_parser.num_errors): print(onnx_parser.get_error(idx)) if not parse_success: sys.exit("ONNX model parsing failed") print("Load Onnx model done") profile = TRT_BUILDER.create_optimization_profile() profile.set_shape("sample", latents_shape, latents_shape, latents_shape) profile.set_shape("encoder_hidden_states", embed_shape, embed_shape, embed_shape) profile.set_shape("controlnet_conds", controlnet_conds_shape, controlnet_conds_shape, controlnet_conds_shape) if sd_xl: profile.set_shape("text_embeds", text_embeds_shape, text_embeds_shape, text_embeds_shape) profile.set_shape("time_ids", time_ids_shape, time_ids_shape, time_ids_shape) config = TRT_BUILDER.create_builder_config() config.add_optimization_profile(profile) config.set_preview_feature(trt.PreviewFeature.DISABLE_EXTERNAL_TACTIC_SOURCES_FOR_CORE_0805, True) if fp16: config.set_flag(trt.BuilderFlag.FP16) plan = TRT_BUILDER.build_serialized_network(network, config) if plan is None: sys.exit("Failed building engine") print("Succeeded building engine") engine = TRT_RUNTIME.deserialize_cuda_engine(plan) ## save TRT engine with open(output_path, "wb") as f: f.write(engine.serialize()) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--sd_xl", action="store_true", default=False, help="SD XL pipeline") parser.add_argument( "--onnx_path", type=str, required=True, help="Path to the onnx checkpoint to convert", ) parser.add_argument("--num_controlnet", type=int) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") args = parser.parse_args() convert_models(args.onnx_path, args.num_controlnet, args.output_path, args.fp16, args.sd_xl)