# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest import numpy as np import torch from transformers import AutoTokenizer, T5EncoderModel from diffusers import ( AutoencoderKL, DDIMScheduler, PixArtSigmaPipeline, PixArtTransformer2DModel, ) from diffusers.utils.testing_utils import ( enable_full_determinism, numpy_cosine_similarity_distance, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, to_np enable_full_determinism() class PixArtSigmaPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = PixArtSigmaPipeline params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} batch_params = TEXT_TO_IMAGE_BATCH_PARAMS image_params = TEXT_TO_IMAGE_IMAGE_PARAMS image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params def get_dummy_components(self): torch.manual_seed(0) transformer = PixArtTransformer2DModel( sample_size=8, num_layers=2, patch_size=2, attention_head_dim=8, num_attention_heads=3, caption_channels=32, in_channels=4, cross_attention_dim=24, out_channels=8, attention_bias=True, activation_fn="gelu-approximate", num_embeds_ada_norm=1000, norm_type="ada_norm_single", norm_elementwise_affine=False, norm_eps=1e-6, ) torch.manual_seed(0) vae = AutoencoderKL() scheduler = DDIMScheduler() text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") components = { "transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "use_resolution_binning": False, "output_type": "np", } return inputs def test_sequential_cpu_offload_forward_pass(self): # TODO(PVP, Sayak) need to fix later return def test_save_load_optional_components(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) prompt = inputs["prompt"] generator = inputs["generator"] num_inference_steps = inputs["num_inference_steps"] output_type = inputs["output_type"] ( prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask, ) = pipe.encode_prompt(prompt) # inputs with prompt converted to embeddings inputs = { "prompt_embeds": prompt_embeds, "prompt_attention_mask": prompt_attention_mask, "negative_prompt": None, "negative_prompt_embeds": negative_prompt_embeds, "negative_prompt_attention_mask": negative_prompt_attention_mask, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, "use_resolution_binning": False, } # set all optional components to None for optional_component in pipe._optional_components: setattr(pipe, optional_component, None) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for optional_component in pipe._optional_components: self.assertTrue( getattr(pipe_loaded, optional_component) is None, f"`{optional_component}` did not stay set to None after loading.", ) inputs = self.get_dummy_inputs(torch_device) generator = inputs["generator"] num_inference_steps = inputs["num_inference_steps"] output_type = inputs["output_type"] # inputs with prompt converted to embeddings inputs = { "prompt_embeds": prompt_embeds, "prompt_attention_mask": prompt_attention_mask, "negative_prompt": None, "negative_prompt_embeds": negative_prompt_embeds, "negative_prompt_attention_mask": negative_prompt_attention_mask, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, "use_resolution_binning": False, } output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() self.assertLess(max_diff, 1e-4) def test_inference(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 8, 8, 3)) expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.4830, 0.2583, 0.5331, 0.4852]) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_inference_non_square_images(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) image = pipe(**inputs, height=32, width=48).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 32, 48, 3)) expected_slice = np.array([0.6493, 0.5370, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263]) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_inference_with_embeddings_and_multiple_images(self): components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(torch_device) prompt = inputs["prompt"] generator = inputs["generator"] num_inference_steps = inputs["num_inference_steps"] output_type = inputs["output_type"] prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt) # inputs with prompt converted to embeddings inputs = { "prompt_embeds": prompt_embeds, "prompt_attention_mask": prompt_attn_mask, "negative_prompt": None, "negative_prompt_embeds": negative_prompt_embeds, "negative_prompt_attention_mask": neg_prompt_attn_mask, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, "num_images_per_prompt": 2, "use_resolution_binning": False, } # set all optional components to None for optional_component in pipe._optional_components: setattr(pipe, optional_component, None) output = pipe(**inputs)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(tmpdir) pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) pipe_loaded.to(torch_device) pipe_loaded.set_progress_bar_config(disable=None) for optional_component in pipe._optional_components: self.assertTrue( getattr(pipe_loaded, optional_component) is None, f"`{optional_component}` did not stay set to None after loading.", ) inputs = self.get_dummy_inputs(torch_device) generator = inputs["generator"] num_inference_steps = inputs["num_inference_steps"] output_type = inputs["output_type"] # inputs with prompt converted to embeddings inputs = { "prompt_embeds": prompt_embeds, "prompt_attention_mask": prompt_attn_mask, "negative_prompt": None, "negative_prompt_embeds": negative_prompt_embeds, "negative_prompt_attention_mask": neg_prompt_attn_mask, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, "num_images_per_prompt": 2, "use_resolution_binning": False, } output_loaded = pipe_loaded(**inputs)[0] max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() self.assertLess(max_diff, 1e-4) def test_inference_with_multiple_images_per_prompt(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe.to(device) pipe.set_progress_bar_config(disable=None) inputs = self.get_dummy_inputs(device) inputs["num_images_per_prompt"] = 2 image = pipe(**inputs).images image_slice = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (2, 8, 8, 3)) expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.4830, 0.2583, 0.5331, 0.4852]) max_diff = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(max_diff, 1e-3) def test_inference_batch_single_identical(self): self._test_inference_batch_single_identical(expected_max_diff=1e-3) @slow @require_torch_gpu class PixArtSigmaPipelineIntegrationTests(unittest.TestCase): ckpt_id_1024 = "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS" ckpt_id_512 = "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" prompt = "A small cactus with a happy face in the Sahara desert." def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_pixart_1024(self): generator = torch.Generator("cpu").manual_seed(0) pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16) pipe.enable_model_cpu_offload() prompt = self.prompt image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.4517, 0.4446, 0.4375, 0.449, 0.4399, 0.4365, 0.4583, 0.4629, 0.4473]) max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice) self.assertLessEqual(max_diff, 1e-4) def test_pixart_512(self): generator = torch.Generator("cpu").manual_seed(0) transformer = PixArtTransformer2DModel.from_pretrained( self.ckpt_id_512, subfolder="transformer", torch_dtype=torch.float16 ) pipe = PixArtSigmaPipeline.from_pretrained( self.ckpt_id_1024, transformer=transformer, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() prompt = self.prompt image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images image_slice = image[0, -3:, -3:, -1] expected_slice = np.array([0.0479, 0.0378, 0.0217, 0.0942, 0.064, 0.0791, 0.2073, 0.1975, 0.2017]) max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice) self.assertLessEqual(max_diff, 1e-4) def test_pixart_1024_without_resolution_binning(self): generator = torch.manual_seed(0) pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16) pipe.enable_model_cpu_offload() prompt = self.prompt height, width = 1024, 768 num_inference_steps = 2 image = pipe( prompt, height=height, width=width, generator=generator, num_inference_steps=num_inference_steps, output_type="np", ).images image_slice = image[0, -3:, -3:, -1] generator = torch.manual_seed(0) no_res_bin_image = pipe( prompt, height=height, width=width, generator=generator, num_inference_steps=num_inference_steps, output_type="np", use_resolution_binning=False, ).images no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1] assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4) def test_pixart_512_without_resolution_binning(self): generator = torch.manual_seed(0) transformer = PixArtTransformer2DModel.from_pretrained( self.ckpt_id_512, subfolder="transformer", torch_dtype=torch.float16 ) pipe = PixArtSigmaPipeline.from_pretrained( self.ckpt_id_1024, transformer=transformer, torch_dtype=torch.float16 ) pipe.enable_model_cpu_offload() prompt = self.prompt height, width = 512, 768 num_inference_steps = 2 image = pipe( prompt, height=height, width=width, generator=generator, num_inference_steps=num_inference_steps, output_type="np", ).images image_slice = image[0, -3:, -3:, -1] generator = torch.manual_seed(0) no_res_bin_image = pipe( prompt, height=height, width=width, generator=generator, num_inference_steps=num_inference_steps, output_type="np", use_resolution_binning=False, ).images no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1] assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4)