# Consistency Training `train_cm_ct_unconditional.py` trains a consistency model (CM) from scratch following the consistency training (CT) algorithm introduced in [Consistency Models](https://arxiv.org/abs/2303.01469) and refined in [Improved Techniques for Training Consistency Models](https://arxiv.org/abs/2310.14189). Both unconditional and class-conditional training are supported. A usage example is as follows: ```bash accelerate launch examples/research_projects/consistency_training/train_cm_ct_unconditional.py \ --dataset_name="cifar10" \ --dataset_image_column_name="img" \ --output_dir="/path/to/output/dir" \ --mixed_precision=fp16 \ --resolution=32 \ --max_train_steps=1000 --max_train_samples=10000 \ --dataloader_num_workers=8 \ --noise_precond_type="cm" --input_precond_type="cm" \ --train_batch_size=4 \ --learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \ --use_8bit_adam \ --use_ema \ --validation_steps=100 --eval_batch_size=4 \ --checkpointing_steps=100 --checkpoints_total_limit=10 \ --class_conditional --num_classes=10 \ ```