import argparse import os import random import torch import torchvision import torchvision.transforms as TS from PIL import Image from ram import inference_ram from ram.models import ram from tqdm import tqdm from transformers import ( AutoModelForZeroShotObjectDetection, AutoProcessor, Blip2ForConditionalGeneration, Blip2Processor, CLIPTextModel, CLIPTokenizer, ) torch.autograd.set_grad_enabled(False) if __name__ == "__main__": parser = argparse.ArgumentParser("Caption Generation script", add_help=False) parser.add_argument("--data_root", type=str, required=True, help="path to COCO") parser.add_argument("--save_root", type=str, required=True, help="path to save") parser.add_argument("--ram_checkpoint", type=str, required=True, help="path to save") args = parser.parse_args() # ram_checkpoint = '/root/.cache/huggingface/hub/models--xinyu1205--recognize_anything_model/snapshots/ebc52dc741e86466202a5ab8ab22eae6e7d48bf1/ram_swin_large_14m.pth' # data_root = '/mnt/workspace/workgroup/zhizhonghuang/dataset/COCO/train2017' # save_root = '/root/gligen_data' box_threshold = 0.25 text_threshold = 0.2 import torch.distributed as dist dist.init_process_group(backend="nccl", init_method="env://") local_rank = torch.distributed.get_rank() % torch.cuda.device_count() device = f"cuda:{local_rank}" torch.cuda.set_device(local_rank) ram_model = ram(pretrained=args.ram_checkpoint, image_size=384, vit="swin_l").cuda().eval() ram_processor = TS.Compose( [TS.Resize((384, 384)), TS.ToTensor(), TS.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])] ) grounding_dino_processor = AutoProcessor.from_pretrained("IDEA-Research/grounding-dino-base") grounding_dino_model = AutoModelForZeroShotObjectDetection.from_pretrained( "IDEA-Research/grounding-dino-base" ).cuda() blip2_processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xxl") blip2_model = Blip2ForConditionalGeneration.from_pretrained( "Salesforce/blip2-flan-t5-xxl", torch_dtype=torch.float16 ).cuda() clip_text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14").cuda() clip_tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") image_paths = [os.path.join(args.data_root, x) for x in os.listdir(args.data_root)] random.shuffle(image_paths) for image_path in tqdm.tqdm(image_paths): pth_path = os.path.join(args.save_root, os.path.basename(image_path)) if os.path.exists(pth_path): continue sample = {"file_path": os.path.basename(image_path), "annos": []} raw_image = Image.open(image_path).convert("RGB") res = inference_ram(ram_processor(raw_image).unsqueeze(0).cuda(), ram_model) text = res[0].replace(" |", ".") inputs = grounding_dino_processor(images=raw_image, text=text, return_tensors="pt") inputs = {k: v.cuda() for k, v in inputs.items()} outputs = grounding_dino_model(**inputs) results = grounding_dino_processor.post_process_grounded_object_detection( outputs, inputs["input_ids"], box_threshold=box_threshold, text_threshold=text_threshold, target_sizes=[raw_image.size[::-1]], ) boxes = results[0]["boxes"] labels = results[0]["labels"] scores = results[0]["scores"] indices = torchvision.ops.nms(boxes, scores, 0.5) boxes = boxes[indices] category_names = [labels[i] for i in indices] for i, bbox in enumerate(boxes): bbox = bbox.tolist() inputs = blip2_processor(images=raw_image.crop(bbox), return_tensors="pt") inputs = {k: v.cuda().to(torch.float16) for k, v in inputs.items()} outputs = blip2_model.generate(**inputs) caption = blip2_processor.decode(outputs[0], skip_special_tokens=True) inputs = clip_tokenizer( caption, padding="max_length", max_length=clip_tokenizer.model_max_length, truncation=True, return_tensors="pt", ) inputs = {k: v.cuda() for k, v in inputs.items()} text_embeddings_before_projection = clip_text_encoder(**inputs).pooler_output.squeeze(0) sample["annos"].append( { "caption": caption, "bbox": bbox, "text_embeddings_before_projection": text_embeddings_before_projection, } ) torch.save(sample, pth_path)