## Training examples Creating a training image set is [described in a different document](https://huggingface.co/docs/datasets/image_process#image-datasets). ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: **Important** To make sure you can successfully run the latest versions of the example scripts, we highly recommend **installing from source** and keeping the install up to date as we update the example scripts frequently and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` Then cd in the example folder and run ```bash pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` #### Use ONNXRuntime to accelerate training In order to leverage onnxruntime to accelerate training, please use train_unconditional_ort.py The command to train a DDPM UNet model on the Oxford Flowers dataset with onnxruntime: ```bash accelerate launch train_unconditional.py \ --dataset_name="huggan/flowers-102-categories" \ --resolution=64 --center_crop --random_flip \ --output_dir="ddpm-ema-flowers-64" \ --use_ema \ --train_batch_size=16 \ --num_epochs=1 \ --gradient_accumulation_steps=1 \ --learning_rate=1e-4 \ --lr_warmup_steps=500 \ --mixed_precision=fp16 ``` Please contact Prathik Rao (prathikr), Sunghoon Choi (hanbitmyths), Ashwini Khade (askhade), or Peng Wang (pengwa) on github with any questions.