# Show best practices for SDXL JAX import time import jax import jax.numpy as jnp import numpy as np from flax.jax_utils import replicate # Let's cache the model compilation, so that it doesn't take as long the next time around. from jax.experimental.compilation_cache import compilation_cache as cc from diffusers import FlaxStableDiffusionXLPipeline cc.initialize_cache("/tmp/sdxl_cache") NUM_DEVICES = jax.device_count() # 1. Let's start by downloading the model and loading it into our pipeline class # Adhering to JAX's functional approach, the model's parameters are returned seperatetely and # will have to be passed to the pipeline during inference pipeline, params = FlaxStableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", revision="refs/pr/95", split_head_dim=True ) # 2. We cast all parameters to bfloat16 EXCEPT the scheduler which we leave in # float32 to keep maximal precision scheduler_state = params.pop("scheduler") params = jax.tree_util.tree_map(lambda x: x.astype(jnp.bfloat16), params) params["scheduler"] = scheduler_state # 3. Next, we define the different inputs to the pipeline default_prompt = "a colorful photo of a castle in the middle of a forest with trees and bushes, by Ismail Inceoglu, shadows, high contrast, dynamic shading, hdr, detailed vegetation, digital painting, digital drawing, detailed painting, a detailed digital painting, gothic art, featured on deviantart" default_neg_prompt = "fog, grainy, purple" default_seed = 33 default_guidance_scale = 5.0 default_num_steps = 25 # 4. In order to be able to compile the pipeline # all inputs have to be tensors or strings # Let's tokenize the prompt and negative prompt def tokenize_prompt(prompt, neg_prompt): prompt_ids = pipeline.prepare_inputs(prompt) neg_prompt_ids = pipeline.prepare_inputs(neg_prompt) return prompt_ids, neg_prompt_ids # 5. To make full use of JAX's parallelization capabilities # the parameters and input tensors are duplicated across devices # To make sure every device generates a different image, we create # different seeds for each image. The model parameters won't change # during inference so we do not wrap them into a function p_params = replicate(params) def replicate_all(prompt_ids, neg_prompt_ids, seed): p_prompt_ids = replicate(prompt_ids) p_neg_prompt_ids = replicate(neg_prompt_ids) rng = jax.random.PRNGKey(seed) rng = jax.random.split(rng, NUM_DEVICES) return p_prompt_ids, p_neg_prompt_ids, rng # 6. Let's now put it all together in a generate function def generate( prompt, negative_prompt, seed=default_seed, guidance_scale=default_guidance_scale, num_inference_steps=default_num_steps, ): prompt_ids, neg_prompt_ids = tokenize_prompt(prompt, negative_prompt) prompt_ids, neg_prompt_ids, rng = replicate_all(prompt_ids, neg_prompt_ids, seed) images = pipeline( prompt_ids, p_params, rng, num_inference_steps=num_inference_steps, neg_prompt_ids=neg_prompt_ids, guidance_scale=guidance_scale, jit=True, ).images # convert the images to PIL images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) return pipeline.numpy_to_pil(np.array(images)) # 7. Remember that the first call will compile the function and hence be very slow. Let's run generate once # so that the pipeline call is compiled start = time.time() print("Compiling ...") generate(default_prompt, default_neg_prompt) print(f"Compiled in {time.time() - start}") # 8. Now the model forward pass will run very quickly, let's try it again start = time.time() prompt = "photo of a rhino dressed suit and tie sitting at a table in a bar with a bar stools, award winning photography, Elke vogelsang" neg_prompt = "cartoon, illustration, animation. face. male, female" images = generate(prompt, neg_prompt) print(f"Inference in {time.time() - start}") for i, image in enumerate(images): image.save(f"castle_{i}.png")