# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys import tempfile sys.path.append("..") from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class TextualInversionSdxl(ExamplesTestsAccelerate): def test_textual_inversion_sdxl(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/textual_inversion/textual_inversion_sdxl.py --pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe --train_data_dir docs/source/en/imgs --learnable_property object --placeholder_token --initializer_token a --save_steps 1 --num_vectors 2 --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} """.split() run_command(self._launch_args + test_args) # save_pretrained smoke test self.assertTrue(os.path.isfile(os.path.join(tmpdir, "learned_embeds.safetensors"))) def test_textual_inversion_sdxl_checkpointing(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/textual_inversion/textual_inversion_sdxl.py --pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe --train_data_dir docs/source/en/imgs --learnable_property object --placeholder_token --initializer_token a --save_steps 1 --num_vectors 2 --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 3 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=1 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + test_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-3"}, ) def test_textual_inversion_sdxl_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): with tempfile.TemporaryDirectory() as tmpdir: test_args = f""" examples/textual_inversion/textual_inversion_sdxl.py --pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe --train_data_dir docs/source/en/imgs --learnable_property object --placeholder_token --initializer_token a --save_steps 1 --num_vectors 2 --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=1 """.split() run_command(self._launch_args + test_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-1", "checkpoint-2"}, ) resume_run_args = f""" examples/textual_inversion/textual_inversion_sdxl.py --pretrained_model_name_or_path hf-internal-testing/tiny-sdxl-pipe --train_data_dir docs/source/en/imgs --learnable_property object --placeholder_token --initializer_token a --save_steps 1 --num_vectors 2 --resolution 64 --train_batch_size 1 --gradient_accumulation_steps 1 --max_train_steps 2 --learning_rate 5.0e-04 --scale_lr --lr_scheduler constant --lr_warmup_steps 0 --output_dir {tmpdir} --checkpointing_steps=1 --resume_from_checkpoint=checkpoint-2 --checkpoints_total_limit=2 """.split() run_command(self._launch_args + resume_run_args) # check checkpoint directories exist self.assertEqual( {x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-2", "checkpoint-3"}, )