from typing import List import PIL.Image import torch from PIL import Image from ...configuration_utils import ConfigMixin from ...models.modeling_utils import ModelMixin from ...utils import PIL_INTERPOLATION class IFWatermarker(ModelMixin, ConfigMixin): def __init__(self): super().__init__() self.register_buffer("watermark_image", torch.zeros((62, 62, 4))) self.watermark_image_as_pil = None def apply_watermark(self, images: List[PIL.Image.Image], sample_size=None): # Copied from https://github.com/deep-floyd/IF/blob/b77482e36ca2031cb94dbca1001fc1e6400bf4ab/deepfloyd_if/modules/base.py#L287 h = images[0].height w = images[0].width sample_size = sample_size or h coef = min(h / sample_size, w / sample_size) img_h, img_w = (int(h / coef), int(w / coef)) if coef < 1 else (h, w) S1, S2 = 1024**2, img_w * img_h K = (S2 / S1) ** 0.5 wm_size, wm_x, wm_y = int(K * 62), img_w - int(14 * K), img_h - int(14 * K) if self.watermark_image_as_pil is None: watermark_image = self.watermark_image.to(torch.uint8).cpu().numpy() watermark_image = Image.fromarray(watermark_image, mode="RGBA") self.watermark_image_as_pil = watermark_image wm_img = self.watermark_image_as_pil.resize( (wm_size, wm_size), PIL_INTERPOLATION["bicubic"], reducing_gap=None ) for pil_img in images: pil_img.paste(wm_img, box=(wm_x - wm_size, wm_y - wm_size, wm_x, wm_y), mask=wm_img.split()[-1]) return images