# Copyright (c) 2022 Pablo PernĂ­as MIT License # Copyright 2024 UC Berkeley Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from ..utils.torch_utils import randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class DDPMWuerstchenSchedulerOutput(BaseOutput): """ Output class for the scheduler's step function output. Args: prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. """ prev_sample: torch.Tensor def betas_for_alpha_bar( num_diffusion_timesteps, max_beta=0.999, alpha_transform_type="cosine", ): """ Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of (1-beta) over time from t = [0,1]. Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up to that part of the diffusion process. Args: num_diffusion_timesteps (`int`): the number of betas to produce. max_beta (`float`): the maximum beta to use; use values lower than 1 to prevent singularities. alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. Choose from `cosine` or `exp` Returns: betas (`np.ndarray`): the betas used by the scheduler to step the model outputs """ if alpha_transform_type == "cosine": def alpha_bar_fn(t): return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(t): return math.exp(t * -12.0) else: raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}") betas = [] for i in range(num_diffusion_timesteps): t1 = i / num_diffusion_timesteps t2 = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) return torch.tensor(betas, dtype=torch.float32) class DDPMWuerstchenScheduler(SchedulerMixin, ConfigMixin): """ Denoising diffusion probabilistic models (DDPMs) explores the connections between denoising score matching and Langevin dynamics sampling. [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions. For more details, see the original paper: https://arxiv.org/abs/2006.11239 Args: scaler (`float`): .... s (`float`): .... """ @register_to_config def __init__( self, scaler: float = 1.0, s: float = 0.008, ): self.scaler = scaler self.s = torch.tensor([s]) self._init_alpha_cumprod = torch.cos(self.s / (1 + self.s) * torch.pi * 0.5) ** 2 # standard deviation of the initial noise distribution self.init_noise_sigma = 1.0 def _alpha_cumprod(self, t, device): if self.scaler > 1: t = 1 - (1 - t) ** self.scaler elif self.scaler < 1: t = t**self.scaler alpha_cumprod = torch.cos( (t + self.s.to(device)) / (1 + self.s.to(device)) * torch.pi * 0.5 ) ** 2 / self._init_alpha_cumprod.to(device) return alpha_cumprod.clamp(0.0001, 0.9999) def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor: """ Ensures interchangeability with schedulers that need to scale the denoising model input depending on the current timestep. Args: sample (`torch.Tensor`): input sample timestep (`int`, optional): current timestep Returns: `torch.Tensor`: scaled input sample """ return sample def set_timesteps( self, num_inference_steps: int = None, timesteps: Optional[List[int]] = None, device: Union[str, torch.device] = None, ): """ Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. Args: num_inference_steps (`Dict[float, int]`): the number of diffusion steps used when generating samples with a pre-trained model. If passed, then `timesteps` must be `None`. device (`str` or `torch.device`, optional): the device to which the timesteps are moved to. {2 / 3: 20, 0.0: 10} """ if timesteps is None: timesteps = torch.linspace(1.0, 0.0, num_inference_steps + 1, device=device) if not isinstance(timesteps, torch.Tensor): timesteps = torch.Tensor(timesteps).to(device) self.timesteps = timesteps def step( self, model_output: torch.Tensor, timestep: int, sample: torch.Tensor, generator=None, return_dict: bool = True, ) -> Union[DDPMWuerstchenSchedulerOutput, Tuple]: """ Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion process from the learned model outputs (most often the predicted noise). Args: model_output (`torch.Tensor`): direct output from learned diffusion model. timestep (`int`): current discrete timestep in the diffusion chain. sample (`torch.Tensor`): current instance of sample being created by diffusion process. generator: random number generator. return_dict (`bool`): option for returning tuple rather than DDPMWuerstchenSchedulerOutput class Returns: [`DDPMWuerstchenSchedulerOutput`] or `tuple`: [`DDPMWuerstchenSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. """ dtype = model_output.dtype device = model_output.device t = timestep prev_t = self.previous_timestep(t) alpha_cumprod = self._alpha_cumprod(t, device).view(t.size(0), *[1 for _ in sample.shape[1:]]) alpha_cumprod_prev = self._alpha_cumprod(prev_t, device).view(prev_t.size(0), *[1 for _ in sample.shape[1:]]) alpha = alpha_cumprod / alpha_cumprod_prev mu = (1.0 / alpha).sqrt() * (sample - (1 - alpha) * model_output / (1 - alpha_cumprod).sqrt()) std_noise = randn_tensor(mu.shape, generator=generator, device=model_output.device, dtype=model_output.dtype) std = ((1 - alpha) * (1.0 - alpha_cumprod_prev) / (1.0 - alpha_cumprod)).sqrt() * std_noise pred = mu + std * (prev_t != 0).float().view(prev_t.size(0), *[1 for _ in sample.shape[1:]]) if not return_dict: return (pred.to(dtype),) return DDPMWuerstchenSchedulerOutput(prev_sample=pred.to(dtype)) def add_noise( self, original_samples: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor, ) -> torch.Tensor: device = original_samples.device dtype = original_samples.dtype alpha_cumprod = self._alpha_cumprod(timesteps, device=device).view( timesteps.size(0), *[1 for _ in original_samples.shape[1:]] ) noisy_samples = alpha_cumprod.sqrt() * original_samples + (1 - alpha_cumprod).sqrt() * noise return noisy_samples.to(dtype=dtype) def __len__(self): return self.config.num_train_timesteps def previous_timestep(self, timestep): index = (self.timesteps - timestep[0]).abs().argmin().item() prev_t = self.timesteps[index + 1][None].expand(timestep.shape[0]) return prev_t