# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import AmusedImg2ImgPipeline, AmusedScheduler, UVit2DModel, VQModel from diffusers.utils import load_image from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class AmusedImg2ImgPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = AmusedImg2ImgPipeline params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width", "latents"} batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS required_optional_params = PipelineTesterMixin.required_optional_params - { "latents", } def get_dummy_components(self): torch.manual_seed(0) transformer = UVit2DModel( hidden_size=8, use_bias=False, hidden_dropout=0.0, cond_embed_dim=8, micro_cond_encode_dim=2, micro_cond_embed_dim=10, encoder_hidden_size=8, vocab_size=32, codebook_size=8, in_channels=8, block_out_channels=8, num_res_blocks=1, downsample=True, upsample=True, block_num_heads=1, num_hidden_layers=1, num_attention_heads=1, attention_dropout=0.0, intermediate_size=8, layer_norm_eps=1e-06, ln_elementwise_affine=True, ) scheduler = AmusedScheduler(mask_token_id=31) torch.manual_seed(0) vqvae = VQModel( act_fn="silu", block_out_channels=[8], down_block_types=[ "DownEncoderBlock2D", ], in_channels=3, latent_channels=8, layers_per_block=1, norm_num_groups=8, num_vq_embeddings=32, # reducing this to 16 or 8 -> RuntimeError: "cdist_cuda" not implemented for 'Half' out_channels=3, sample_size=8, up_block_types=[ "UpDecoderBlock2D", ], mid_block_add_attention=False, lookup_from_codebook=True, ) torch.manual_seed(0) text_encoder_config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=8, intermediate_size=8, layer_norm_eps=1e-05, num_attention_heads=1, num_hidden_layers=1, pad_token_id=1, vocab_size=1000, projection_dim=8, ) text_encoder = CLIPTextModelWithProjection(text_encoder_config) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") components = { "transformer": transformer, "scheduler": scheduler, "vqvae": vqvae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def get_dummy_inputs(self, device, seed=0): if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) image = torch.full((1, 3, 4, 4), 1.0, dtype=torch.float32, device=device) inputs = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "np", "image": image, } return inputs def test_inference_batch_consistent(self, batch_sizes=[2]): self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False) @unittest.skip("aMUSEd does not support lists of generators") def test_inference_batch_single_identical(self): ... @slow @require_torch_gpu class AmusedImg2ImgPipelineSlowTests(unittest.TestCase): def test_amused_256(self): pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-256") pipe.to(torch_device) image = ( load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg") .resize((256, 256)) .convert("RGB") ) image = pipe( "winter mountains", image, generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np", ).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.9993, 1.0, 0.9996, 1.0, 0.9995, 0.9925, 0.9990, 0.9954, 1.0]) assert np.abs(image_slice - expected_slice).max() < 1e-2 def test_amused_256_fp16(self): pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-256", torch_dtype=torch.float16, variant="fp16") pipe.to(torch_device) image = ( load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg") .resize((256, 256)) .convert("RGB") ) image = pipe( "winter mountains", image, generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np", ).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.9980, 0.9980, 0.9940, 0.9944, 0.9960, 0.9908, 1.0, 1.0, 0.9986]) assert np.abs(image_slice - expected_slice).max() < 1e-2 def test_amused_512(self): pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-512") pipe.to(torch_device) image = ( load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg") .resize((512, 512)) .convert("RGB") ) image = pipe( "winter mountains", image, generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np", ).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.1344, 0.0985, 0.0, 0.1194, 0.1809, 0.0765, 0.0854, 0.1371, 0.0933]) assert np.abs(image_slice - expected_slice).max() < 0.1 def test_amused_512_fp16(self): pipe = AmusedImg2ImgPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16) pipe.to(torch_device) image = ( load_image("https://huggingface.co/datasets/diffusers/docs-images/resolve/main/open_muse/mountains.jpg") .resize((512, 512)) .convert("RGB") ) image = pipe( "winter mountains", image, generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np", ).images image_slice = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.1536, 0.1767, 0.0227, 0.1079, 0.2400, 0.1427, 0.1511, 0.1564, 0.1542]) assert np.abs(image_slice - expected_slice).max() < 0.1