import gc import tempfile import unittest import torch from diffusers import EulerDiscreteScheduler, StableDiffusionPipeline from diffusers.utils.testing_utils import ( enable_full_determinism, require_torch_gpu, slow, ) from .single_file_testing_utils import ( SDSingleFileTesterMixin, download_original_config, download_single_file_checkpoint, ) enable_full_determinism() @slow @require_torch_gpu class StableDiffusionPipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionPipeline ckpt_path = "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors" original_config = ( "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) repo_id = "runwayml/stable-diffusion-v1-5" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) inputs = { "prompt": "a fantasy landscape, concept art, high resolution", "generator": generator, "num_inference_steps": 2, "strength": 0.75, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3) def test_single_file_legacy_scheduler_loading(self): with tempfile.TemporaryDirectory() as tmpdir: ckpt_filename = self.ckpt_path.split("/")[-1] local_ckpt_path = download_single_file_checkpoint(self.repo_id, ckpt_filename, tmpdir) local_original_config = download_original_config(self.original_config, tmpdir) pipe = self.pipeline_class.from_single_file( local_ckpt_path, original_config=local_original_config, cache_dir=tmpdir, local_files_only=True, scheduler_type="euler", ) # Default is PNDM for this checkpoint assert isinstance(pipe.scheduler, EulerDiscreteScheduler) def test_single_file_legacy_scaling_factor(self): new_scaling_factor = 10.0 init_pipe = self.pipeline_class.from_single_file(self.ckpt_path) pipe = self.pipeline_class.from_single_file(self.ckpt_path, scaling_factor=new_scaling_factor) assert init_pipe.vae.config.scaling_factor != new_scaling_factor assert pipe.vae.config.scaling_factor == new_scaling_factor @slow class StableDiffusion21PipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): pipeline_class = StableDiffusionPipeline ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-2-1/blob/main/v2-1_768-ema-pruned.safetensors" original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml" repo_id = "stabilityai/stable-diffusion-2-1" def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): generator = torch.Generator(device=generator_device).manual_seed(seed) inputs = { "prompt": "a fantasy landscape, concept art, high resolution", "generator": generator, "num_inference_steps": 2, "strength": 0.75, "guidance_scale": 7.5, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): super().test_single_file_format_inference_is_same_as_pretrained(expected_max_diff=1e-3)