# Tiny AutoEncoder Tiny AutoEncoder for Stable Diffusion (TAESD) was introduced in [madebyollin/taesd](https://github.com/madebyollin/taesd) by Ollin Boer Bohan. It is a tiny distilled version of Stable Diffusion's VAE that can quickly decode the latents in a [`StableDiffusionPipeline`] or [`StableDiffusionXLPipeline`] almost instantly. To use with Stable Diffusion v-2.1: ```python import torch from diffusers import DiffusionPipeline, AutoencoderTiny pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2-1-base", torch_dtype=torch.float16 ) pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesd", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "slice of delicious New York-style berry cheesecake" image = pipe(prompt, num_inference_steps=25).images[0] image ``` To use with Stable Diffusion XL 1.0 ```python import torch from diffusers import DiffusionPipeline, AutoencoderTiny pipe = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taesdxl", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "slice of delicious New York-style berry cheesecake" image = pipe(prompt, num_inference_steps=25).images[0] image ``` ## AutoencoderTiny [[autodoc]] AutoencoderTiny ## AutoencoderTinyOutput [[autodoc]] models.autoencoders.autoencoder_tiny.AutoencoderTinyOutput