# Shap-E The Shap-E model was proposed in [Shap-E: Generating Conditional 3D Implicit Functions](https://huggingface.co/papers/2305.02463) by Alex Nichol and Heewoo Jun from [OpenAI](https://github.com/openai). The abstract from the paper is: *We present Shap-E, a conditional generative model for 3D assets. Unlike recent work on 3D generative models which produce a single output representation, Shap-E directly generates the parameters of implicit functions that can be rendered as both textured meshes and neural radiance fields. We train Shap-E in two stages: first, we train an encoder that deterministically maps 3D assets into the parameters of an implicit function; second, we train a conditional diffusion model on outputs of the encoder. When trained on a large dataset of paired 3D and text data, our resulting models are capable of generating complex and diverse 3D assets in a matter of seconds. When compared to Point-E, an explicit generative model over point clouds, Shap-E converges faster and reaches comparable or better sample quality despite modeling a higher-dimensional, multi-representation output space.* The original codebase can be found at [openai/shap-e](https://github.com/openai/shap-e). See the [reuse components across pipelines](../../using-diffusers/loading#reuse-components-across-pipelines) section to learn how to efficiently load the same components into multiple pipelines. ## ShapEPipeline [[autodoc]] ShapEPipeline - all - __call__ ## ShapEImg2ImgPipeline [[autodoc]] ShapEImg2ImgPipeline - all - __call__ ## ShapEPipelineOutput [[autodoc]] pipelines.shap_e.pipeline_shap_e.ShapEPipelineOutput