# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import gc import importlib import sys import time import unittest import numpy as np import torch from packaging import version from diffusers import ( ControlNetModel, EulerDiscreteScheduler, LCMScheduler, StableDiffusionXLAdapterPipeline, StableDiffusionXLControlNetPipeline, StableDiffusionXLPipeline, T2IAdapter, ) from diffusers.utils.import_utils import is_accelerate_available from diffusers.utils.testing_utils import ( load_image, nightly, numpy_cosine_similarity_distance, require_peft_backend, require_torch_gpu, slow, torch_device, ) sys.path.append(".") from utils import PeftLoraLoaderMixinTests, check_if_lora_correctly_set, state_dicts_almost_equal # noqa: E402 if is_accelerate_available(): from accelerate.utils import release_memory class StableDiffusionXLLoRATests(PeftLoraLoaderMixinTests, unittest.TestCase): has_two_text_encoders = True pipeline_class = StableDiffusionXLPipeline scheduler_cls = EulerDiscreteScheduler scheduler_kwargs = { "beta_start": 0.00085, "beta_end": 0.012, "beta_schedule": "scaled_linear", "timestep_spacing": "leading", "steps_offset": 1, } unet_kwargs = { "block_out_channels": (32, 64), "layers_per_block": 2, "sample_size": 32, "in_channels": 4, "out_channels": 4, "down_block_types": ("DownBlock2D", "CrossAttnDownBlock2D"), "up_block_types": ("CrossAttnUpBlock2D", "UpBlock2D"), "attention_head_dim": (2, 4), "use_linear_projection": True, "addition_embed_type": "text_time", "addition_time_embed_dim": 8, "transformer_layers_per_block": (1, 2), "projection_class_embeddings_input_dim": 80, # 6 * 8 + 32 "cross_attention_dim": 64, } vae_kwargs = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, "sample_size": 128, } def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() @slow @require_torch_gpu @require_peft_backend class LoraSDXLIntegrationTests(unittest.TestCase): def setUp(self): super().setUp() gc.collect() torch.cuda.empty_cache() def tearDown(self): super().tearDown() gc.collect() torch.cuda.empty_cache() def test_sdxl_0_9_lora_one(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") lora_model_id = "hf-internal-testing/sdxl-0.9-daiton-lora" lora_filename = "daiton-xl-lora-test.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.enable_model_cpu_offload() images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.3838, 0.3482, 0.3588, 0.3162, 0.319, 0.3369, 0.338, 0.3366, 0.3213]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_sdxl_0_9_lora_two(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") lora_model_id = "hf-internal-testing/sdxl-0.9-costumes-lora" lora_filename = "saijo.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.enable_model_cpu_offload() images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.3137, 0.3269, 0.3355, 0.255, 0.2577, 0.2563, 0.2679, 0.2758, 0.2626]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_sdxl_0_9_lora_three(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") lora_model_id = "hf-internal-testing/sdxl-0.9-kamepan-lora" lora_filename = "kame_sdxl_v2-000020-16rank.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.enable_model_cpu_offload() images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.4015, 0.3761, 0.3616, 0.3745, 0.3462, 0.3337, 0.3564, 0.3649, 0.3468]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 5e-3 pipe.unload_lora_weights() release_memory(pipe) def test_sdxl_1_0_lora(self): generator = torch.Generator("cpu").manual_seed(0) pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe.enable_model_cpu_offload() lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-4 pipe.unload_lora_weights() release_memory(pipe) def test_sdxl_1_0_blockwise_lora(self): generator = torch.Generator("cpu").manual_seed(0) pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe.enable_model_cpu_offload() lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, adapter_name="offset") scales = { "unet": { "down": {"block_1": [1.0, 1.0], "block_2": [1.0, 1.0]}, "mid": 1.0, "up": {"block_0": [1.0, 1.0, 1.0], "block_1": [1.0, 1.0, 1.0]}, }, } pipe.set_adapters(["offset"], [scales]) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([00.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-4 pipe.unload_lora_weights() release_memory(pipe) def test_sdxl_lcm_lora(self): pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() generator = torch.Generator("cpu").manual_seed(0) lora_model_id = "latent-consistency/lcm-lora-sdxl" pipe.load_lora_weights(lora_model_id) image = pipe( "masterpiece, best quality, mountain", generator=generator, num_inference_steps=4, guidance_scale=0.5 ).images[0] expected_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/lcm_lora/sdxl_lcm_lora.png" ) image_np = pipe.image_processor.pil_to_numpy(image) expected_image_np = pipe.image_processor.pil_to_numpy(expected_image) max_diff = numpy_cosine_similarity_distance(image_np.flatten(), expected_image_np.flatten()) assert max_diff < 1e-4 pipe.unload_lora_weights() release_memory(pipe) def test_sdxl_1_0_lora_fusion(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.fuse_lora() # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being # silently deleted - otherwise this will CPU OOM pipe.unload_lora_weights() pipe.enable_model_cpu_offload() images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() # This way we also test equivalence between LoRA fusion and the non-fusion behaviour. expected = np.array([0.4468, 0.4061, 0.4134, 0.3637, 0.3202, 0.365, 0.3786, 0.3725, 0.3535]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-4 release_memory(pipe) def test_sdxl_1_0_lora_unfusion(self): generator = torch.Generator("cpu").manual_seed(0) pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.fuse_lora() pipe.enable_model_cpu_offload() images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3 ).images images_with_fusion = images.flatten() pipe.unfuse_lora() generator = torch.Generator("cpu").manual_seed(0) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=3 ).images images_without_fusion = images.flatten() max_diff = numpy_cosine_similarity_distance(images_with_fusion, images_without_fusion) assert max_diff < 1e-4 release_memory(pipe) def test_sdxl_1_0_lora_unfusion_effectivity(self): pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe.enable_model_cpu_offload() generator = torch.Generator().manual_seed(0) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images original_image_slice = images[0, -3:, -3:, -1].flatten() lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) pipe.fuse_lora() generator = torch.Generator().manual_seed(0) _ = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images pipe.unfuse_lora() # We need to unload the lora weights - in the old API unfuse led to unloading the adapter weights pipe.unload_lora_weights() generator = torch.Generator().manual_seed(0) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images_without_fusion_slice = images[0, -3:, -3:, -1].flatten() max_diff = numpy_cosine_similarity_distance(images_without_fusion_slice, original_image_slice) assert max_diff < 1e-3 release_memory(pipe) def test_sdxl_1_0_lora_fusion_efficiency(self): generator = torch.Generator().manual_seed(0) lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16) pipe.enable_model_cpu_offload() start_time = time.time() for _ in range(3): pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images end_time = time.time() elapsed_time_non_fusion = end_time - start_time del pipe pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) pipe.load_lora_weights(lora_model_id, weight_name=lora_filename, torch_dtype=torch.float16) pipe.fuse_lora() # We need to unload the lora weights since in the previous API `fuse_lora` led to lora weights being # silently deleted - otherwise this will CPU OOM pipe.unload_lora_weights() pipe.enable_model_cpu_offload() generator = torch.Generator().manual_seed(0) start_time = time.time() for _ in range(3): pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images end_time = time.time() elapsed_time_fusion = end_time - start_time self.assertTrue(elapsed_time_fusion < elapsed_time_non_fusion) release_memory(pipe) def test_sdxl_1_0_last_ben(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe.enable_model_cpu_offload() lora_model_id = "TheLastBen/Papercut_SDXL" lora_filename = "papercut.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe("papercut.safetensors", output_type="np", generator=generator, num_inference_steps=2).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.5244, 0.4347, 0.4312, 0.4246, 0.4398, 0.4409, 0.4884, 0.4938, 0.4094]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_sdxl_1_0_fuse_unfuse_all(self): pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) text_encoder_1_sd = copy.deepcopy(pipe.text_encoder.state_dict()) text_encoder_2_sd = copy.deepcopy(pipe.text_encoder_2.state_dict()) unet_sd = copy.deepcopy(pipe.unet.state_dict()) pipe.load_lora_weights( "davizca87/sun-flower", weight_name="snfw3rXL-000004.safetensors", torch_dtype=torch.float16 ) fused_te_state_dict = pipe.text_encoder.state_dict() fused_te_2_state_dict = pipe.text_encoder_2.state_dict() unet_state_dict = pipe.unet.state_dict() peft_ge_070 = version.parse(importlib.metadata.version("peft")) >= version.parse("0.7.0") def remap_key(key, sd): # some keys have moved around for PEFT >= 0.7.0, but they should still be loaded correctly if (key in sd) or (not peft_ge_070): return key # instead of linear.weight, we now have linear.base_layer.weight, etc. if key.endswith(".weight"): key = key[:-7] + ".base_layer.weight" elif key.endswith(".bias"): key = key[:-5] + ".base_layer.bias" return key for key, value in text_encoder_1_sd.items(): key = remap_key(key, fused_te_state_dict) self.assertTrue(torch.allclose(fused_te_state_dict[key], value)) for key, value in text_encoder_2_sd.items(): key = remap_key(key, fused_te_2_state_dict) self.assertTrue(torch.allclose(fused_te_2_state_dict[key], value)) for key, value in unet_state_dict.items(): self.assertTrue(torch.allclose(unet_state_dict[key], value)) pipe.fuse_lora() pipe.unload_lora_weights() assert not state_dicts_almost_equal(text_encoder_1_sd, pipe.text_encoder.state_dict()) assert not state_dicts_almost_equal(text_encoder_2_sd, pipe.text_encoder_2.state_dict()) assert not state_dicts_almost_equal(unet_sd, pipe.unet.state_dict()) release_memory(pipe) del unet_sd, text_encoder_1_sd, text_encoder_2_sd def test_sdxl_1_0_lora_with_sequential_cpu_offloading(self): generator = torch.Generator().manual_seed(0) pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipe.enable_sequential_cpu_offload() lora_model_id = "hf-internal-testing/sdxl-1.0-lora" lora_filename = "sd_xl_offset_example-lora_1.0.safetensors" pipe.load_lora_weights(lora_model_id, weight_name=lora_filename) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images images = images[0, -3:, -3:, -1].flatten() expected = np.array([0.4468, 0.4087, 0.4134, 0.366, 0.3202, 0.3505, 0.3786, 0.387, 0.3535]) max_diff = numpy_cosine_similarity_distance(expected, images) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) def test_controlnet_canny_lora(self): controlnet = ControlNetModel.from_pretrained("diffusers/controlnet-canny-sdxl-1.0") pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet ) pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors") pipe.enable_sequential_cpu_offload() generator = torch.Generator(device="cpu").manual_seed(0) prompt = "corgi" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images assert images[0].shape == (768, 512, 3) original_image = images[0, -3:, -3:, -1].flatten() expected_image = np.array([0.4574, 0.4487, 0.4435, 0.5163, 0.4396, 0.4411, 0.518, 0.4465, 0.4333]) max_diff = numpy_cosine_similarity_distance(expected_image, original_image) assert max_diff < 1e-4 pipe.unload_lora_weights() release_memory(pipe) def test_sdxl_t2i_adapter_canny_lora(self): adapter = T2IAdapter.from_pretrained("TencentARC/t2i-adapter-lineart-sdxl-1.0", torch_dtype=torch.float16).to( "cpu" ) pipe = StableDiffusionXLAdapterPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", adapter=adapter, torch_dtype=torch.float16, variant="fp16", ) pipe.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors") pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device="cpu").manual_seed(0) prompt = "toy" image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/t2i_adapter/toy_canny.png" ) images = pipe(prompt, image=image, generator=generator, output_type="np", num_inference_steps=3).images assert images[0].shape == (768, 512, 3) image_slice = images[0, -3:, -3:, -1].flatten() expected_slice = np.array([0.4284, 0.4337, 0.4319, 0.4255, 0.4329, 0.4280, 0.4338, 0.4420, 0.4226]) assert numpy_cosine_similarity_distance(image_slice, expected_slice) < 1e-4 @nightly def test_sequential_fuse_unfuse(self): pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ) # 1. round pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) pipe.to(torch_device) pipe.fuse_lora() generator = torch.Generator().manual_seed(0) images = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images image_slice = images[0, -3:, -3:, -1].flatten() pipe.unfuse_lora() # 2. round pipe.load_lora_weights("ProomptEngineer/pe-balloon-diffusion-style", torch_dtype=torch.float16) pipe.fuse_lora() pipe.unfuse_lora() # 3. round pipe.load_lora_weights("ostris/crayon_style_lora_sdxl", torch_dtype=torch.float16) pipe.fuse_lora() pipe.unfuse_lora() # 4. back to 1st round pipe.load_lora_weights("Pclanglais/TintinIA", torch_dtype=torch.float16) pipe.fuse_lora() generator = torch.Generator().manual_seed(0) images_2 = pipe( "masterpiece, best quality, mountain", output_type="np", generator=generator, num_inference_steps=2 ).images image_slice_2 = images_2[0, -3:, -3:, -1].flatten() max_diff = numpy_cosine_similarity_distance(image_slice, image_slice_2) assert max_diff < 1e-3 pipe.unload_lora_weights() release_memory(pipe) @nightly def test_integration_logits_multi_adapter(self): path = "stabilityai/stable-diffusion-xl-base-1.0" lora_id = "CiroN2022/toy-face" pipe = StableDiffusionXLPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe.load_lora_weights(lora_id, weight_name="toy_face_sdxl.safetensors", adapter_name="toy") pipe = pipe.to(torch_device) self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") prompt = "toy_face of a hacker with a hoodie" lora_scale = 0.9 images = pipe( prompt=prompt, num_inference_steps=30, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": lora_scale}, output_type="np", ).images expected_slice_scale = np.array([0.538, 0.539, 0.540, 0.540, 0.542, 0.539, 0.538, 0.541, 0.539]) predicted_slice = images[0, -3:, -3:, -1].flatten() max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) assert max_diff < 1e-3 pipe.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel") pipe.set_adapters("pixel") prompt = "pixel art, a hacker with a hoodie, simple, flat colors" images = pipe( prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0), output_type="np", ).images predicted_slice = images[0, -3:, -3:, -1].flatten() expected_slice_scale = np.array( [0.61973065, 0.62018543, 0.62181497, 0.61933696, 0.6208608, 0.620576, 0.6200281, 0.62258327, 0.6259889] ) max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) assert max_diff < 1e-3 # multi-adapter inference pipe.set_adapters(["pixel", "toy"], adapter_weights=[0.5, 1.0]) images = pipe( prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={"scale": 1.0}, generator=torch.manual_seed(0), output_type="np", ).images predicted_slice = images[0, -3:, -3:, -1].flatten() expected_slice_scale = np.array([0.5888, 0.5897, 0.5946, 0.5888, 0.5935, 0.5946, 0.5857, 0.5891, 0.5909]) max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) assert max_diff < 1e-3 # Lora disabled pipe.disable_lora() images = pipe( prompt, num_inference_steps=30, guidance_scale=7.5, cross_attention_kwargs={"scale": lora_scale}, generator=torch.manual_seed(0), output_type="np", ).images predicted_slice = images[0, -3:, -3:, -1].flatten() expected_slice_scale = np.array([0.5456, 0.5466, 0.5487, 0.5458, 0.5469, 0.5454, 0.5446, 0.5479, 0.5487]) max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) assert max_diff < 1e-3 @nightly def test_integration_logits_for_dora_lora(self): pipeline = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0") pipeline.load_lora_weights("hf-internal-testing/dora-trained-on-kohya") pipeline.enable_model_cpu_offload() images = pipeline( "photo of ohwx dog", num_inference_steps=10, generator=torch.manual_seed(0), output_type="np", ).images predicted_slice = images[0, -3:, -3:, -1].flatten() expected_slice_scale = np.array([0.3932, 0.3742, 0.4429, 0.3737, 0.3504, 0.433, 0.3948, 0.3769, 0.4516]) max_diff = numpy_cosine_similarity_distance(expected_slice_scale, predicted_slice) assert max_diff < 1e-3