# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest from itertools import product import numpy as np import torch from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, LCMScheduler, UNet2DConditionModel, ) from diffusers.utils.import_utils import is_peft_available from diffusers.utils.testing_utils import ( floats_tensor, require_peft_backend, require_peft_version_greater, skip_mps, torch_device, ) if is_peft_available(): from peft import LoraConfig from peft.tuners.tuners_utils import BaseTunerLayer from peft.utils import get_peft_model_state_dict def state_dicts_almost_equal(sd1, sd2): sd1 = dict(sorted(sd1.items())) sd2 = dict(sorted(sd2.items())) models_are_equal = True for ten1, ten2 in zip(sd1.values(), sd2.values()): if (ten1 - ten2).abs().max() > 1e-3: models_are_equal = False return models_are_equal def check_if_lora_correctly_set(model) -> bool: """ Checks if the LoRA layers are correctly set with peft """ for module in model.modules(): if isinstance(module, BaseTunerLayer): return True return False @require_peft_backend class PeftLoraLoaderMixinTests: pipeline_class = None scheduler_cls = None scheduler_kwargs = None has_two_text_encoders = False unet_kwargs = None vae_kwargs = None def get_dummy_components(self, scheduler_cls=None, use_dora=False): scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls rank = 4 torch.manual_seed(0) unet = UNet2DConditionModel(**self.unet_kwargs) scheduler = scheduler_cls(**self.scheduler_kwargs) torch.manual_seed(0) vae = AutoencoderKL(**self.vae_kwargs) text_encoder = CLIPTextModel.from_pretrained("peft-internal-testing/tiny-clip-text-2") tokenizer = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2") if self.has_two_text_encoders: text_encoder_2 = CLIPTextModelWithProjection.from_pretrained("peft-internal-testing/tiny-clip-text-2") tokenizer_2 = CLIPTokenizer.from_pretrained("peft-internal-testing/tiny-clip-text-2") text_lora_config = LoraConfig( r=rank, lora_alpha=rank, target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], init_lora_weights=False, use_dora=use_dora, ) unet_lora_config = LoraConfig( r=rank, lora_alpha=rank, target_modules=["to_q", "to_k", "to_v", "to_out.0"], init_lora_weights=False, use_dora=use_dora, ) if self.has_two_text_encoders: pipeline_components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_2, "tokenizer_2": tokenizer_2, "image_encoder": None, "feature_extractor": None, } else: pipeline_components = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, "image_encoder": None, } return pipeline_components, text_lora_config, unet_lora_config def get_dummy_inputs(self, with_generator=True): batch_size = 1 sequence_length = 10 num_channels = 4 sizes = (32, 32) generator = torch.manual_seed(0) noise = floats_tensor((batch_size, num_channels) + sizes) input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator) pipeline_inputs = { "prompt": "A painting of a squirrel eating a burger", "num_inference_steps": 5, "guidance_scale": 6.0, "output_type": "np", } if with_generator: pipeline_inputs.update({"generator": generator}) return noise, input_ids, pipeline_inputs # Copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb def get_dummy_tokens(self): max_seq_length = 77 inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0)) prepared_inputs = {} prepared_inputs["input_ids"] = inputs return prepared_inputs def test_simple_inference(self): """ Tests a simple inference and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs() output_no_lora = pipe(**inputs).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) def test_simple_inference_with_text_lora(self): """ Tests a simple inference with lora attached on the text encoder and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" ) def test_simple_inference_with_text_lora_and_scale(self): """ Tests a simple inference with lora attached on the text encoder + scale argument and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" ) output_lora_scale = pipe( **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5} ).images self.assertTrue( not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), "Lora + scale should change the output", ) output_lora_0_scale = pipe( **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0} ).images self.assertTrue( np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), "Lora + 0 scale should lead to same result as no LoRA", ) def test_simple_inference_with_text_lora_fused(self): """ Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.fuse_lora() # Fusing should still keep the LoRA layers self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") if self.has_two_text_encoders: self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertFalse( np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" ) def test_simple_inference_with_text_lora_unloaded(self): """ Tests a simple inference with lora attached to text encoder, then unloads the lora weights and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.unload_lora_weights() # unloading should remove the LoRA layers self.assertFalse( check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" ) if self.has_two_text_encoders: self.assertFalse( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly unloaded in text encoder 2", ) ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output", ) def test_simple_inference_with_text_lora_save_load(self): """ Tests a simple usecase where users could use saving utilities for LoRA. """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images with tempfile.TemporaryDirectory() as tmpdirname: text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) if self.has_two_text_encoders: text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) self.pipeline_class.save_lora_weights( save_directory=tmpdirname, text_encoder_lora_layers=text_encoder_state_dict, text_encoder_2_lora_layers=text_encoder_2_state_dict, safe_serialization=False, ) else: self.pipeline_class.save_lora_weights( save_directory=tmpdirname, text_encoder_lora_layers=text_encoder_state_dict, safe_serialization=False, ) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) pipe.unload_lora_weights() pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") if self.has_two_text_encoders: self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) self.assertTrue( np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), "Loading from saved checkpoints should give same results.", ) def test_simple_inference_with_partial_text_lora(self): """ Tests a simple inference with lora attached on the text encoder with different ranks and some adapters removed and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, _ = self.get_dummy_components(scheduler_cls) # Verify `LoraLoaderMixin.load_lora_into_text_encoder` handles different ranks per module (PR#8324). text_lora_config = LoraConfig( r=4, rank_pattern={"q_proj": 1, "k_proj": 2, "v_proj": 3}, lora_alpha=4, target_modules=["q_proj", "k_proj", "v_proj", "out_proj"], init_lora_weights=False, use_dora=False, ) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") # Gather the state dict for the PEFT model, excluding `layers.4`, to ensure `load_lora_into_text_encoder` # supports missing layers (PR#8324). state_dict = { f"text_encoder.{module_name}": param for module_name, param in get_peft_model_state_dict(pipe.text_encoder).items() if "text_model.encoder.layers.4" not in module_name } if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) state_dict.update( { f"text_encoder_2.{module_name}": param for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items() if "text_model.encoder.layers.4" not in module_name } ) output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" ) # Unload lora and load it back using the pipe.load_lora_weights machinery pipe.unload_lora_weights() pipe.load_lora_weights(state_dict) output_partial_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( not np.allclose(output_partial_lora, output_lora, atol=1e-3, rtol=1e-3), "Removing adapters should change the output", ) def test_simple_inference_save_pretrained(self): """ Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname) pipe_from_pretrained.to(torch_device) self.assertTrue( check_if_lora_correctly_set(pipe_from_pretrained.text_encoder), "Lora not correctly set in text encoder", ) if self.has_two_text_encoders: self.assertTrue( check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2), "Lora not correctly set in text encoder 2", ) images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3), "Loading from saved checkpoints should give same results.", ) def test_simple_inference_with_text_unet_lora_save_load(self): """ Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images with tempfile.TemporaryDirectory() as tmpdirname: text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder) unet_state_dict = get_peft_model_state_dict(pipe.unet) if self.has_two_text_encoders: text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2) self.pipeline_class.save_lora_weights( save_directory=tmpdirname, text_encoder_lora_layers=text_encoder_state_dict, text_encoder_2_lora_layers=text_encoder_2_state_dict, unet_lora_layers=unet_state_dict, safe_serialization=False, ) else: self.pipeline_class.save_lora_weights( save_directory=tmpdirname, text_encoder_lora_layers=text_encoder_state_dict, unet_lora_layers=unet_state_dict, safe_serialization=False, ) self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))) pipe.unload_lora_weights() pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin")) images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) self.assertTrue( np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3), "Loading from saved checkpoints should give same results.", ) def test_simple_inference_with_text_unet_lora_and_scale(self): """ Tests a simple inference with lora attached on the text encoder + Unet + scale argument and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output" ) output_lora_scale = pipe( **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5} ).images self.assertTrue( not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3), "Lora + scale should change the output", ) output_lora_0_scale = pipe( **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0} ).images self.assertTrue( np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3), "Lora + 0 scale should lead to same result as no LoRA", ) self.assertTrue( pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0, "The scaling parameter has not been correctly restored!", ) def test_simple_inference_with_text_lora_unet_fused(self): """ Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model and makes sure it works as expected - with unet """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.fuse_lora() # Fusing should still keep the LoRA layers self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in unet") if self.has_two_text_encoders: self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertFalse( np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output" ) def test_simple_inference_with_text_unet_lora_unloaded(self): """ Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.unload_lora_weights() # unloading should remove the LoRA layers self.assertFalse( check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder" ) self.assertFalse(check_if_lora_correctly_set(pipe.unet), "Lora not correctly unloaded in Unet") if self.has_two_text_encoders: self.assertFalse( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly unloaded in text encoder 2", ) ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output", ) def test_simple_inference_with_text_unet_lora_unfused(self): """ Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.fuse_lora() output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.unfuse_lora() output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images # unloading should remove the LoRA layers self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Unfuse should still keep LoRA layers") if self.has_two_text_encoders: self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers" ) # Fuse and unfuse should lead to the same results self.assertTrue( np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output", ) def test_simple_inference_with_text_unet_multi_adapter(self): """ Tests a simple inference with lora attached to text encoder and unet, attaches multiple adapters and set them """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-2") self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.set_adapters("adapter-1") output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters("adapter-2") output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters(["adapter-1", "adapter-2"]) output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images # Fuse and unfuse should lead to the same results self.assertFalse( np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), "Adapter 1 and 2 should give different results", ) self.assertFalse( np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 1 and mixed adapters should give different results", ) self.assertFalse( np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 2 and mixed adapters should give different results", ) pipe.disable_lora() output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), "output with no lora and output with lora disabled should give same results", ) def test_simple_inference_with_text_unet_block_scale(self): """ Tests a simple inference with lora attached to text encoder and unet, attaches one adapter and set differnt weights for different blocks (i.e. block lora) """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-1") self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) weights_1 = {"text_encoder": 2, "unet": {"down": 5}} pipe.set_adapters("adapter-1", weights_1) output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0)).images weights_2 = {"unet": {"up": 5}} pipe.set_adapters("adapter-1", weights_2) output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertFalse( np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3), "LoRA weights 1 and 2 should give different results", ) self.assertFalse( np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3), "No adapter and LoRA weights 1 should give different results", ) self.assertFalse( np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3), "No adapter and LoRA weights 2 should give different results", ) pipe.disable_lora() output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), "output with no lora and output with lora disabled should give same results", ) def test_simple_inference_with_text_unet_multi_adapter_block_lora(self): """ Tests a simple inference with lora attached to text encoder and unet, attaches multiple adapters and set differnt weights for different blocks (i.e. block lora) """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-2") self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) scales_1 = {"text_encoder": 2, "unet": {"down": 5}} scales_2 = {"unet": {"down": 5, "mid": 5}} pipe.set_adapters("adapter-1", scales_1) output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters("adapter-2", scales_2) output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2]) output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images # Fuse and unfuse should lead to the same results self.assertFalse( np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), "Adapter 1 and 2 should give different results", ) self.assertFalse( np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 1 and mixed adapters should give different results", ) self.assertFalse( np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 2 and mixed adapters should give different results", ) pipe.disable_lora() output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), "output with no lora and output with lora disabled should give same results", ) # a mismatching number of adapter_names and adapter_weights should raise an error with self.assertRaises(ValueError): pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1]) def test_simple_inference_with_text_unet_block_scale_for_all_dict_options(self): """Tests that any valid combination of lora block scales can be used in pipe.set_adapter""" def updown_options(blocks_with_tf, layers_per_block, value): """ Generate every possible combination for how a lora weight dict for the up/down part can be. E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ... """ num_val = value list_val = [value] * layers_per_block node_opts = [None, num_val, list_val] node_opts_foreach_block = [node_opts] * len(blocks_with_tf) updown_opts = [num_val] for nodes in product(*node_opts_foreach_block): if all(n is None for n in nodes): continue opt = {} for b, n in zip(blocks_with_tf, nodes): if n is not None: opt["block_" + str(b)] = n updown_opts.append(opt) return updown_opts def all_possible_dict_opts(unet, value): """ Generate every possible combination for how a lora weight dict can be. E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ... """ down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")] up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")] layers_per_block = unet.config.layers_per_block text_encoder_opts = [None, value] text_encoder_2_opts = [None, value] mid_opts = [None, value] down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value) up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value) opts = [] for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts): if all(o is None for o in (t1, t2, d, m, u)): continue opt = {} if t1 is not None: opt["text_encoder"] = t1 if t2 is not None: opt["text_encoder_2"] = t2 if all(o is None for o in (d, m, u)): # no unet scaling continue opt["unet"] = {} if d is not None: opt["unet"]["down"] = d if m is not None: opt["unet"]["mid"] = m if u is not None: opt["unet"]["up"] = u opts.append(opt) return opts components, text_lora_config, unet_lora_config = self.get_dummy_components(self.scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-1") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") for scale_dict in all_possible_dict_opts(pipe.unet, value=1234): # test if lora block scales can be set with this scale_dict if not self.has_two_text_encoders and "text_encoder_2" in scale_dict: del scale_dict["text_encoder_2"] pipe.set_adapters("adapter-1", scale_dict) # test will fail if this line throws an error def test_simple_inference_with_text_unet_multi_adapter_delete_adapter(self): """ Tests a simple inference with lora attached to text encoder and unet, attaches multiple adapters and set/delete them """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-2") self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.set_adapters("adapter-1") output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters("adapter-2") output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters(["adapter-1", "adapter-2"]) output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertFalse( np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), "Adapter 1 and 2 should give different results", ) self.assertFalse( np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 1 and mixed adapters should give different results", ) self.assertFalse( np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 2 and mixed adapters should give different results", ) pipe.delete_adapters("adapter-1") output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), "Adapter 1 and 2 should give different results", ) pipe.delete_adapters("adapter-2") output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), "output with no lora and output with lora disabled should give same results", ) pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-2") pipe.set_adapters(["adapter-1", "adapter-2"]) pipe.delete_adapters(["adapter-1", "adapter-2"]) output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3), "output with no lora and output with lora disabled should give same results", ) def test_simple_inference_with_text_unet_multi_adapter_weighted(self): """ Tests a simple inference with lora attached to text encoder and unet, attaches multiple adapters and set them """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-2") self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.set_adapters("adapter-1") output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters("adapter-2") output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters(["adapter-1", "adapter-2"]) output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images # Fuse and unfuse should lead to the same results self.assertFalse( np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3), "Adapter 1 and 2 should give different results", ) self.assertFalse( np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 1 and mixed adapters should give different results", ) self.assertFalse( np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Adapter 2 and mixed adapters should give different results", ) pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6]) output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertFalse( np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3), "Weighted adapter and mixed adapter should give different results", ) pipe.disable_lora() output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3), "output with no lora and output with lora disabled should give same results", ) @skip_mps def test_lora_fuse_nan(self): for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-1") self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") # corrupt one LoRA weight with `inf` values with torch.no_grad(): pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A["adapter-1"].weight += float( "inf" ) # with `safe_fusing=True` we should see an Error with self.assertRaises(ValueError): pipe.fuse_lora(safe_fusing=True) # without we should not see an error, but every image will be black pipe.fuse_lora(safe_fusing=False) out = pipe("test", num_inference_steps=2, output_type="np").images self.assertTrue(np.isnan(out).all()) def test_get_adapters(self): """ Tests a simple usecase where we attach multiple adapters and check if the results are the expected results """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-1") adapter_names = pipe.get_active_adapters() self.assertListEqual(adapter_names, ["adapter-1"]) pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-2") adapter_names = pipe.get_active_adapters() self.assertListEqual(adapter_names, ["adapter-2"]) pipe.set_adapters(["adapter-1", "adapter-2"]) self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"]) def test_get_list_adapters(self): """ Tests a simple usecase where we attach multiple adapters and check if the results are the expected results """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-1") adapter_names = pipe.get_list_adapters() self.assertDictEqual(adapter_names, {"text_encoder": ["adapter-1"], "unet": ["adapter-1"]}) pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-2") adapter_names = pipe.get_list_adapters() self.assertDictEqual( adapter_names, {"text_encoder": ["adapter-1", "adapter-2"], "unet": ["adapter-1", "adapter-2"]} ) pipe.set_adapters(["adapter-1", "adapter-2"]) self.assertDictEqual( pipe.get_list_adapters(), {"unet": ["adapter-1", "adapter-2"], "text_encoder": ["adapter-1", "adapter-2"]}, ) pipe.unet.add_adapter(unet_lora_config, "adapter-3") self.assertDictEqual( pipe.get_list_adapters(), {"unet": ["adapter-1", "adapter-2", "adapter-3"], "text_encoder": ["adapter-1", "adapter-2"]}, ) @require_peft_version_greater(peft_version="0.6.2") def test_simple_inference_with_text_lora_unet_fused_multi(self): """ Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model and makes sure it works as expected - with unet and multi-adapter case """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config, "adapter-1") pipe.unet.add_adapter(unet_lora_config, "adapter-1") # Attach a second adapter pipe.text_encoder.add_adapter(text_lora_config, "adapter-2") pipe.unet.add_adapter(unet_lora_config, "adapter-2") self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1") pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2") self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) # set them to multi-adapter inference mode pipe.set_adapters(["adapter-1", "adapter-2"]) ouputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.set_adapters(["adapter-1"]) ouputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0)).images pipe.fuse_lora(adapter_names=["adapter-1"]) # Fusing should still keep the LoRA layers so outpout should remain the same outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(ouputs_lora_1, outputs_lora_1_fused, atol=1e-3, rtol=1e-3), "Fused lora should not change the output", ) pipe.unfuse_lora() pipe.fuse_lora(adapter_names=["adapter-2", "adapter-1"]) # Fusing should still keep the LoRA layers output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue( np.allclose(output_all_lora_fused, ouputs_all_lora, atol=1e-3, rtol=1e-3), "Fused lora should not change the output", ) @require_peft_version_greater(peft_version="0.9.0") def test_simple_inference_with_dora(self): for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls, use_dora=True) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertTrue(output_no_dora_lora.shape == (1, 64, 64, 3)) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images self.assertFalse( np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3), "DoRA lora should change the output", ) @unittest.skip("This is failing for now - need to investigate") def test_simple_inference_with_text_unet_lora_unfused_torch_compile(self): """ Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights and makes sure it works as expected """ for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, text_lora_config, unet_lora_config = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _, _, inputs = self.get_dummy_inputs(with_generator=False) pipe.text_encoder.add_adapter(text_lora_config) pipe.unet.add_adapter(unet_lora_config) self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder") self.assertTrue(check_if_lora_correctly_set(pipe.unet), "Lora not correctly set in Unet") if self.has_two_text_encoders: pipe.text_encoder_2.add_adapter(text_lora_config) self.assertTrue( check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2" ) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True) if self.has_two_text_encoders: pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True) # Just makes sure it works.. _ = pipe(**inputs, generator=torch.manual_seed(0)).images def test_modify_padding_mode(self): def set_pad_mode(network, mode="circular"): for _, module in network.named_modules(): if isinstance(module, torch.nn.Conv2d): module.padding_mode = mode for scheduler_cls in [DDIMScheduler, LCMScheduler]: components, _, _ = self.get_dummy_components(scheduler_cls) pipe = self.pipeline_class(**components) pipe = pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) _pad_mode = "circular" set_pad_mode(pipe.vae, _pad_mode) set_pad_mode(pipe.unet, _pad_mode) _, _, inputs = self.get_dummy_inputs() _ = pipe(**inputs).images