# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL.Image import torch import torch.nn.functional as F from PIL import Image, ImageFilter, ImageOps from .configuration_utils import ConfigMixin, register_to_config from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate PipelineImageInput = Union[ PIL.Image.Image, np.ndarray, torch.Tensor, List[PIL.Image.Image], List[np.ndarray], List[torch.Tensor], ] PipelineDepthInput = PipelineImageInput def is_valid_image(image): return isinstance(image, PIL.Image.Image) or isinstance(image, (np.ndarray, torch.Tensor)) and image.ndim in (2, 3) def is_valid_image_imagelist(images): # check if the image input is one of the supported formats for image and image list: # it can be either one of below 3 # (1) a 4d pytorch tensor or numpy array, # (2) a valid image: PIL.Image.Image, 2-d np.ndarray or torch.Tensor (grayscale image), 3-d np.ndarray or torch.Tensor # (3) a list of valid image if isinstance(images, (np.ndarray, torch.Tensor)) and images.ndim == 4: return True elif is_valid_image(images): return True elif isinstance(images, list): return all(is_valid_image(image) for image in images) return False class VaeImageProcessor(ConfigMixin): """ Image processor for VAE. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image to [-1,1]. do_binarize (`bool`, *optional*, defaults to `False`): Whether to binarize the image to 0/1. do_convert_rgb (`bool`, *optional*, defaults to be `False`): Whether to convert the images to RGB format. do_convert_grayscale (`bool`, *optional*, defaults to be `False`): Whether to convert the images to grayscale format. """ config_name = CONFIG_NAME @register_to_config def __init__( self, do_resize: bool = True, vae_scale_factor: int = 8, vae_latent_channels: int = 4, resample: str = "lanczos", do_normalize: bool = True, do_binarize: bool = False, do_convert_rgb: bool = False, do_convert_grayscale: bool = False, ): super().__init__() if do_convert_rgb and do_convert_grayscale: raise ValueError( "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`," " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.", " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`", ) @staticmethod def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]: """ Convert a numpy image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for grayscale (single channel) images pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] else: pil_images = [Image.fromarray(image) for image in images] return pil_images @staticmethod def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray: """ Convert a PIL image or a list of PIL images to NumPy arrays. """ if not isinstance(images, list): images = [images] images = [np.array(image).astype(np.float32) / 255.0 for image in images] images = np.stack(images, axis=0) return images @staticmethod def numpy_to_pt(images: np.ndarray) -> torch.Tensor: """ Convert a NumPy image to a PyTorch tensor. """ if images.ndim == 3: images = images[..., None] images = torch.from_numpy(images.transpose(0, 3, 1, 2)) return images @staticmethod def pt_to_numpy(images: torch.Tensor) -> np.ndarray: """ Convert a PyTorch tensor to a NumPy image. """ images = images.cpu().permute(0, 2, 3, 1).float().numpy() return images @staticmethod def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: """ Normalize an image array to [-1,1]. """ return 2.0 * images - 1.0 @staticmethod def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: """ Denormalize an image array to [0,1]. """ return (images / 2 + 0.5).clamp(0, 1) @staticmethod def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image: """ Converts a PIL image to RGB format. """ image = image.convert("RGB") return image @staticmethod def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image: """ Converts a PIL image to grayscale format. """ image = image.convert("L") return image @staticmethod def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image: """ Applies Gaussian blur to an image. """ image = image.filter(ImageFilter.GaussianBlur(blur_factor)) return image @staticmethod def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0): """ Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128. Args: mask_image (PIL.Image.Image): Mask image. width (int): Width of the image to be processed. height (int): Height of the image to be processed. pad (int, optional): Padding to be added to the crop region. Defaults to 0. Returns: tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and matches the original aspect ratio. """ mask_image = mask_image.convert("L") mask = np.array(mask_image) # 1. find a rectangular region that contains all masked ares in an image h, w = mask.shape crop_left = 0 for i in range(w): if not (mask[:, i] == 0).all(): break crop_left += 1 crop_right = 0 for i in reversed(range(w)): if not (mask[:, i] == 0).all(): break crop_right += 1 crop_top = 0 for i in range(h): if not (mask[i] == 0).all(): break crop_top += 1 crop_bottom = 0 for i in reversed(range(h)): if not (mask[i] == 0).all(): break crop_bottom += 1 # 2. add padding to the crop region x1, y1, x2, y2 = ( int(max(crop_left - pad, 0)), int(max(crop_top - pad, 0)), int(min(w - crop_right + pad, w)), int(min(h - crop_bottom + pad, h)), ) # 3. expands crop region to match the aspect ratio of the image to be processed ratio_crop_region = (x2 - x1) / (y2 - y1) ratio_processing = width / height if ratio_crop_region > ratio_processing: desired_height = (x2 - x1) / ratio_processing desired_height_diff = int(desired_height - (y2 - y1)) y1 -= desired_height_diff // 2 y2 += desired_height_diff - desired_height_diff // 2 if y2 >= mask_image.height: diff = y2 - mask_image.height y2 -= diff y1 -= diff if y1 < 0: y2 -= y1 y1 -= y1 if y2 >= mask_image.height: y2 = mask_image.height else: desired_width = (y2 - y1) * ratio_processing desired_width_diff = int(desired_width - (x2 - x1)) x1 -= desired_width_diff // 2 x2 += desired_width_diff - desired_width_diff // 2 if x2 >= mask_image.width: diff = x2 - mask_image.width x2 -= diff x1 -= diff if x1 < 0: x2 -= x1 x1 -= x1 if x2 >= mask_image.width: x2 = mask_image.width return x1, y1, x2, y2 def _resize_and_fill( self, image: PIL.Image.Image, width: int, height: int, ) -> PIL.Image.Image: """ Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. Args: image: The image to resize. width: The width to resize the image to. height: The height to resize the image to. """ ratio = width / height src_ratio = image.width / image.height src_w = width if ratio < src_ratio else image.width * height // image.height src_h = height if ratio >= src_ratio else image.height * width // image.width resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"]) res = Image.new("RGB", (width, height)) res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) if ratio < src_ratio: fill_height = height // 2 - src_h // 2 if fill_height > 0: res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) res.paste( resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h), ) elif ratio > src_ratio: fill_width = width // 2 - src_w // 2 if fill_width > 0: res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) res.paste( resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0), ) return res def _resize_and_crop( self, image: PIL.Image.Image, width: int, height: int, ) -> PIL.Image.Image: """ Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. Args: image: The image to resize. width: The width to resize the image to. height: The height to resize the image to. """ ratio = width / height src_ratio = image.width / image.height src_w = width if ratio > src_ratio else image.width * height // image.height src_h = height if ratio <= src_ratio else image.height * width // image.width resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"]) res = Image.new("RGB", (width, height)) res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) return res def resize( self, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], height: int, width: int, resize_mode: str = "default", # "default", "fill", "crop" ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: """ Resize image. Args: image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`): The image input, can be a PIL image, numpy array or pytorch tensor. height (`int`): The height to resize to. width (`int`): The width to resize to. resize_mode (`str`, *optional*, defaults to `default`): The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only supported for PIL image input. Returns: `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`: The resized image. """ if resize_mode != "default" and not isinstance(image, PIL.Image.Image): raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}") if isinstance(image, PIL.Image.Image): if resize_mode == "default": image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample]) elif resize_mode == "fill": image = self._resize_and_fill(image, width, height) elif resize_mode == "crop": image = self._resize_and_crop(image, width, height) else: raise ValueError(f"resize_mode {resize_mode} is not supported") elif isinstance(image, torch.Tensor): image = torch.nn.functional.interpolate( image, size=(height, width), ) elif isinstance(image, np.ndarray): image = self.numpy_to_pt(image) image = torch.nn.functional.interpolate( image, size=(height, width), ) image = self.pt_to_numpy(image) return image def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image: """ Create a mask. Args: image (`PIL.Image.Image`): The image input, should be a PIL image. Returns: `PIL.Image.Image`: The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1. """ image[image < 0.5] = 0 image[image >= 0.5] = 1 return image def get_default_height_width( self, image: Union[PIL.Image.Image, np.ndarray, torch.Tensor], height: Optional[int] = None, width: Optional[int] = None, ) -> Tuple[int, int]: """ This function return the height and width that are downscaled to the next integer multiple of `vae_scale_factor`. Args: image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`): The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should have shape `[batch, channel, height, width]`. height (`int`, *optional*, defaults to `None`): The height in preprocessed image. If `None`, will use the height of `image` input. width (`int`, *optional*`, defaults to `None`): The width in preprocessed. If `None`, will use the width of the `image` input. """ if height is None: if isinstance(image, PIL.Image.Image): height = image.height elif isinstance(image, torch.Tensor): height = image.shape[2] else: height = image.shape[1] if width is None: if isinstance(image, PIL.Image.Image): width = image.width elif isinstance(image, torch.Tensor): width = image.shape[3] else: width = image.shape[2] width, height = ( x - x % self.config.vae_scale_factor for x in (width, height) ) # resize to integer multiple of vae_scale_factor return height, width def preprocess( self, image: PipelineImageInput, height: Optional[int] = None, width: Optional[int] = None, resize_mode: str = "default", # "default", "fill", "crop" crops_coords: Optional[Tuple[int, int, int, int]] = None, ) -> torch.Tensor: """ Preprocess the image input. Args: image (`pipeline_image_input`): The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of supported formats. height (`int`, *optional*, defaults to `None`): The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default height. width (`int`, *optional*`, defaults to `None`): The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width. resize_mode (`str`, *optional*, defaults to `default`): The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. If `crop`, will resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only supported for PIL image input. crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`): The crop coordinates for each image in the batch. If `None`, will not crop the image. """ supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor) # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3: if isinstance(image, torch.Tensor): # if image is a pytorch tensor could have 2 possible shapes: # 1. batch x height x width: we should insert the channel dimension at position 1 # 2. channel x height x width: we should insert batch dimension at position 0, # however, since both channel and batch dimension has same size 1, it is same to insert at position 1 # for simplicity, we insert a dimension of size 1 at position 1 for both cases image = image.unsqueeze(1) else: # if it is a numpy array, it could have 2 possible shapes: # 1. batch x height x width: insert channel dimension on last position # 2. height x width x channel: insert batch dimension on first position if image.shape[-1] == 1: image = np.expand_dims(image, axis=0) else: image = np.expand_dims(image, axis=-1) if isinstance(image, list) and isinstance(image[0], np.ndarray) and image[0].ndim == 4: warnings.warn( "Passing `image` as a list of 4d np.ndarray is deprecated." "Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray", FutureWarning, ) image = np.concatenate(image, axis=0) if isinstance(image, list) and isinstance(image[0], torch.Tensor) and image[0].ndim == 4: warnings.warn( "Passing `image` as a list of 4d torch.Tensor is deprecated." "Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor", FutureWarning, ) image = torch.cat(image, axis=0) if not is_valid_image_imagelist(image): raise ValueError( f"Input is in incorrect format. Currently, we only support {', '.join(str(x) for x in supported_formats)}" ) if not isinstance(image, list): image = [image] if isinstance(image[0], PIL.Image.Image): if crops_coords is not None: image = [i.crop(crops_coords) for i in image] if self.config.do_resize: height, width = self.get_default_height_width(image[0], height, width) image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image] if self.config.do_convert_rgb: image = [self.convert_to_rgb(i) for i in image] elif self.config.do_convert_grayscale: image = [self.convert_to_grayscale(i) for i in image] image = self.pil_to_numpy(image) # to np image = self.numpy_to_pt(image) # to pt elif isinstance(image[0], np.ndarray): image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0) image = self.numpy_to_pt(image) height, width = self.get_default_height_width(image, height, width) if self.config.do_resize: image = self.resize(image, height, width) elif isinstance(image[0], torch.Tensor): image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0) if self.config.do_convert_grayscale and image.ndim == 3: image = image.unsqueeze(1) channel = image.shape[1] # don't need any preprocess if the image is latents if channel == self.vae_latent_channels: return image height, width = self.get_default_height_width(image, height, width) if self.config.do_resize: image = self.resize(image, height, width) # expected range [0,1], normalize to [-1,1] do_normalize = self.config.do_normalize if do_normalize and image.min() < 0: warnings.warn( "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] " f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]", FutureWarning, ) do_normalize = False if do_normalize: image = self.normalize(image) if self.config.do_binarize: image = self.binarize(image) return image def postprocess( self, image: torch.Tensor, output_type: str = "pil", do_denormalize: Optional[List[bool]] = None, ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: """ Postprocess the image output from tensor to `output_type`. Args: image (`torch.Tensor`): The image input, should be a pytorch tensor with shape `B x C x H x W`. output_type (`str`, *optional*, defaults to `pil`): The output type of the image, can be one of `pil`, `np`, `pt`, `latent`. do_denormalize (`List[bool]`, *optional*, defaults to `None`): Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the `VaeImageProcessor` config. Returns: `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`: The postprocessed image. """ if not isinstance(image, torch.Tensor): raise ValueError( f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" ) if output_type not in ["latent", "pt", "np", "pil"]: deprecation_message = ( f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " "`pil`, `np`, `pt`, `latent`" ) deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False) output_type = "np" if output_type == "latent": return image if do_denormalize is None: do_denormalize = [self.config.do_normalize] * image.shape[0] image = torch.stack( [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])] ) if output_type == "pt": return image image = self.pt_to_numpy(image) if output_type == "np": return image if output_type == "pil": return self.numpy_to_pil(image) def apply_overlay( self, mask: PIL.Image.Image, init_image: PIL.Image.Image, image: PIL.Image.Image, crop_coords: Optional[Tuple[int, int, int, int]] = None, ) -> PIL.Image.Image: """ overlay the inpaint output to the original image """ width, height = image.width, image.height init_image = self.resize(init_image, width=width, height=height) mask = self.resize(mask, width=width, height=height) init_image_masked = PIL.Image.new("RGBa", (width, height)) init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L"))) init_image_masked = init_image_masked.convert("RGBA") if crop_coords is not None: x, y, x2, y2 = crop_coords w = x2 - x h = y2 - y base_image = PIL.Image.new("RGBA", (width, height)) image = self.resize(image, height=h, width=w, resize_mode="crop") base_image.paste(image, (x, y)) image = base_image.convert("RGB") image = image.convert("RGBA") image.alpha_composite(init_image_masked) image = image.convert("RGB") return image class VaeImageProcessorLDM3D(VaeImageProcessor): """ Image processor for VAE LDM3D. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image to [-1,1]. """ config_name = CONFIG_NAME @register_to_config def __init__( self, do_resize: bool = True, vae_scale_factor: int = 8, resample: str = "lanczos", do_normalize: bool = True, ): super().__init__() @staticmethod def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]: """ Convert a NumPy image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for grayscale (single channel) images pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] else: pil_images = [Image.fromarray(image[:, :, :3]) for image in images] return pil_images @staticmethod def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray: """ Convert a PIL image or a list of PIL images to NumPy arrays. """ if not isinstance(images, list): images = [images] images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images] images = np.stack(images, axis=0) return images @staticmethod def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: """ Args: image: RGB-like depth image Returns: depth map """ return image[:, :, 1] * 2**8 + image[:, :, 2] def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]: """ Convert a NumPy depth image or a batch of images to a PIL image. """ if images.ndim == 3: images = images[None, ...] images_depth = images[:, :, :, 3:] if images.shape[-1] == 6: images_depth = (images_depth * 255).round().astype("uint8") pil_images = [ Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth ] elif images.shape[-1] == 4: images_depth = (images_depth * 65535.0).astype(np.uint16) pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth] else: raise Exception("Not supported") return pil_images def postprocess( self, image: torch.Tensor, output_type: str = "pil", do_denormalize: Optional[List[bool]] = None, ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]: """ Postprocess the image output from tensor to `output_type`. Args: image (`torch.Tensor`): The image input, should be a pytorch tensor with shape `B x C x H x W`. output_type (`str`, *optional*, defaults to `pil`): The output type of the image, can be one of `pil`, `np`, `pt`, `latent`. do_denormalize (`List[bool]`, *optional*, defaults to `None`): Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the `VaeImageProcessor` config. Returns: `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`: The postprocessed image. """ if not isinstance(image, torch.Tensor): raise ValueError( f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor" ) if output_type not in ["latent", "pt", "np", "pil"]: deprecation_message = ( f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: " "`pil`, `np`, `pt`, `latent`" ) deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False) output_type = "np" if do_denormalize is None: do_denormalize = [self.config.do_normalize] * image.shape[0] image = torch.stack( [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])] ) image = self.pt_to_numpy(image) if output_type == "np": if image.shape[-1] == 6: image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0) else: image_depth = image[:, :, :, 3:] return image[:, :, :, :3], image_depth if output_type == "pil": return self.numpy_to_pil(image), self.numpy_to_depth(image) else: raise Exception(f"This type {output_type} is not supported") def preprocess( self, rgb: Union[torch.Tensor, PIL.Image.Image, np.ndarray], depth: Union[torch.Tensor, PIL.Image.Image, np.ndarray], height: Optional[int] = None, width: Optional[int] = None, target_res: Optional[int] = None, ) -> torch.Tensor: """ Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors. """ supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor) # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3: raise Exception("This is not yet supported") if isinstance(rgb, supported_formats): rgb = [rgb] depth = [depth] elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)): raise ValueError( f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}" ) if isinstance(rgb[0], PIL.Image.Image): if self.config.do_convert_rgb: raise Exception("This is not yet supported") # rgb = [self.convert_to_rgb(i) for i in rgb] # depth = [self.convert_to_depth(i) for i in depth] #TODO define convert_to_depth if self.config.do_resize or target_res: height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res rgb = [self.resize(i, height, width) for i in rgb] depth = [self.resize(i, height, width) for i in depth] rgb = self.pil_to_numpy(rgb) # to np rgb = self.numpy_to_pt(rgb) # to pt depth = self.depth_pil_to_numpy(depth) # to np depth = self.numpy_to_pt(depth) # to pt elif isinstance(rgb[0], np.ndarray): rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0) rgb = self.numpy_to_pt(rgb) height, width = self.get_default_height_width(rgb, height, width) if self.config.do_resize: rgb = self.resize(rgb, height, width) depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0) depth = self.numpy_to_pt(depth) height, width = self.get_default_height_width(depth, height, width) if self.config.do_resize: depth = self.resize(depth, height, width) elif isinstance(rgb[0], torch.Tensor): raise Exception("This is not yet supported") # rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0) # if self.config.do_convert_grayscale and rgb.ndim == 3: # rgb = rgb.unsqueeze(1) # channel = rgb.shape[1] # height, width = self.get_default_height_width(rgb, height, width) # if self.config.do_resize: # rgb = self.resize(rgb, height, width) # depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0) # if self.config.do_convert_grayscale and depth.ndim == 3: # depth = depth.unsqueeze(1) # channel = depth.shape[1] # # don't need any preprocess if the image is latents # if depth == 4: # return rgb, depth # height, width = self.get_default_height_width(depth, height, width) # if self.config.do_resize: # depth = self.resize(depth, height, width) # expected range [0,1], normalize to [-1,1] do_normalize = self.config.do_normalize if rgb.min() < 0 and do_normalize: warnings.warn( "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] " f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]", FutureWarning, ) do_normalize = False if do_normalize: rgb = self.normalize(rgb) depth = self.normalize(depth) if self.config.do_binarize: rgb = self.binarize(rgb) depth = self.binarize(depth) return rgb, depth class IPAdapterMaskProcessor(VaeImageProcessor): """ Image processor for IP Adapter image masks. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `False`): Whether to normalize the image to [-1,1]. do_binarize (`bool`, *optional*, defaults to `True`): Whether to binarize the image to 0/1. do_convert_grayscale (`bool`, *optional*, defaults to be `True`): Whether to convert the images to grayscale format. """ config_name = CONFIG_NAME @register_to_config def __init__( self, do_resize: bool = True, vae_scale_factor: int = 8, resample: str = "lanczos", do_normalize: bool = False, do_binarize: bool = True, do_convert_grayscale: bool = True, ): super().__init__( do_resize=do_resize, vae_scale_factor=vae_scale_factor, resample=resample, do_normalize=do_normalize, do_binarize=do_binarize, do_convert_grayscale=do_convert_grayscale, ) @staticmethod def downsample(mask: torch.Tensor, batch_size: int, num_queries: int, value_embed_dim: int): """ Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued. Args: mask (`torch.Tensor`): The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`. batch_size (`int`): The batch size. num_queries (`int`): The number of queries. value_embed_dim (`int`): The dimensionality of the value embeddings. Returns: `torch.Tensor`: The downsampled mask tensor. """ o_h = mask.shape[1] o_w = mask.shape[2] ratio = o_w / o_h mask_h = int(math.sqrt(num_queries / ratio)) mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0) mask_w = num_queries // mask_h mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0) # Repeat batch_size times if mask_downsample.shape[0] < batch_size: mask_downsample = mask_downsample.repeat(batch_size, 1, 1) mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1) downsampled_area = mask_h * mask_w # If the output image and the mask do not have the same aspect ratio, tensor shapes will not match # Pad tensor if downsampled_mask.shape[1] is smaller than num_queries if downsampled_area < num_queries: warnings.warn( "The aspect ratio of the mask does not match the aspect ratio of the output image. " "Please update your masks or adjust the output size for optimal performance.", UserWarning, ) mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0) # Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries if downsampled_area > num_queries: warnings.warn( "The aspect ratio of the mask does not match the aspect ratio of the output image. " "Please update your masks or adjust the output size for optimal performance.", UserWarning, ) mask_downsample = mask_downsample[:, :num_queries] # Repeat last dimension to match SDPA output shape mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat( 1, 1, value_embed_dim ) return mask_downsample class PixArtImageProcessor(VaeImageProcessor): """ Image processor for PixArt image resize and crop. Args: do_resize (`bool`, *optional*, defaults to `True`): Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method. vae_scale_factor (`int`, *optional*, defaults to `8`): VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor. resample (`str`, *optional*, defaults to `lanczos`): Resampling filter to use when resizing the image. do_normalize (`bool`, *optional*, defaults to `True`): Whether to normalize the image to [-1,1]. do_binarize (`bool`, *optional*, defaults to `False`): Whether to binarize the image to 0/1. do_convert_rgb (`bool`, *optional*, defaults to be `False`): Whether to convert the images to RGB format. do_convert_grayscale (`bool`, *optional*, defaults to be `False`): Whether to convert the images to grayscale format. """ @register_to_config def __init__( self, do_resize: bool = True, vae_scale_factor: int = 8, resample: str = "lanczos", do_normalize: bool = True, do_binarize: bool = False, do_convert_grayscale: bool = False, ): super().__init__( do_resize=do_resize, vae_scale_factor=vae_scale_factor, resample=resample, do_normalize=do_normalize, do_binarize=do_binarize, do_convert_grayscale=do_convert_grayscale, ) @staticmethod def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]: """Returns binned height and width.""" ar = float(height / width) closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) default_hw = ratios[closest_ratio] return int(default_hw[0]), int(default_hw[1]) @staticmethod def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor: orig_height, orig_width = samples.shape[2], samples.shape[3] # Check if resizing is needed if orig_height != new_height or orig_width != new_width: ratio = max(new_height / orig_height, new_width / orig_width) resized_width = int(orig_width * ratio) resized_height = int(orig_height * ratio) # Resize samples = F.interpolate( samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False ) # Center Crop start_x = (resized_width - new_width) // 2 end_x = start_x + new_width start_y = (resized_height - new_height) // 2 end_y = start_y + new_height samples = samples[:, :, start_y:end_y, start_x:end_x] return samples