from typing import TYPE_CHECKING from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available def text_encoder_lora_state_dict(text_encoder): deprecate( "text_encoder_load_state_dict in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) state_dict = {} for name, module in text_encoder_attn_modules(text_encoder): for k, v in module.q_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v for k, v in module.k_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v for k, v in module.v_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v for k, v in module.out_proj.lora_linear_layer.state_dict().items(): state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v return state_dict if is_transformers_available(): def text_encoder_attn_modules(text_encoder): deprecate( "text_encoder_attn_modules in `models`", "0.27.0", "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.", ) from transformers import CLIPTextModel, CLIPTextModelWithProjection attn_modules = [] if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)): for i, layer in enumerate(text_encoder.text_model.encoder.layers): name = f"text_model.encoder.layers.{i}.self_attn" mod = layer.self_attn attn_modules.append((name, mod)) else: raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}") return attn_modules _import_structure = {} if is_torch_available(): _import_structure["single_file_model"] = ["FromOriginalModelMixin"] _import_structure["unet"] = ["UNet2DConditionLoadersMixin"] _import_structure["utils"] = ["AttnProcsLayers"] if is_transformers_available(): _import_structure["single_file"] = ["FromSingleFileMixin"] _import_structure["lora"] = ["LoraLoaderMixin", "StableDiffusionXLLoraLoaderMixin", "SD3LoraLoaderMixin"] _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"] _import_structure["ip_adapter"] = ["IPAdapterMixin"] _import_structure["peft"] = ["PeftAdapterMixin"] if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT: if is_torch_available(): from .single_file_model import FromOriginalModelMixin from .unet import UNet2DConditionLoadersMixin from .utils import AttnProcsLayers if is_transformers_available(): from .ip_adapter import IPAdapterMixin from .lora import LoraLoaderMixin, SD3LoraLoaderMixin, StableDiffusionXLLoraLoaderMixin from .single_file import FromSingleFileMixin from .textual_inversion import TextualInversionLoaderMixin from .peft import PeftAdapterMixin else: import sys sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)