# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTokenizer from transformers.models.blip_2.configuration_blip_2 import Blip2Config from transformers.models.clip.configuration_clip import CLIPTextConfig from diffusers import AutoencoderKL, BlipDiffusionPipeline, PNDMScheduler, UNet2DConditionModel from diffusers.utils.testing_utils import enable_full_determinism from src.diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor from src.diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel from src.diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class BlipDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): pipeline_class = BlipDiffusionPipeline params = [ "prompt", "reference_image", "source_subject_category", "target_subject_category", ] batch_params = [ "prompt", "reference_image", "source_subject_category", "target_subject_category", ] required_optional_params = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "neg_prompt", "guidance_scale", "prompt_strength", "prompt_reps", ] def get_dummy_components(self): torch.manual_seed(0) text_encoder_config = CLIPTextConfig( vocab_size=1000, hidden_size=8, intermediate_size=8, projection_dim=8, num_hidden_layers=1, num_attention_heads=1, max_position_embeddings=77, ) text_encoder = ContextCLIPTextModel(text_encoder_config) vae = AutoencoderKL( in_channels=4, out_channels=4, down_block_types=("DownEncoderBlock2D",), up_block_types=("UpDecoderBlock2D",), block_out_channels=(8,), norm_num_groups=8, layers_per_block=1, act_fn="silu", latent_channels=4, sample_size=8, ) blip_vision_config = { "hidden_size": 8, "intermediate_size": 8, "num_hidden_layers": 1, "num_attention_heads": 1, "image_size": 224, "patch_size": 14, "hidden_act": "quick_gelu", } blip_qformer_config = { "vocab_size": 1000, "hidden_size": 8, "num_hidden_layers": 1, "num_attention_heads": 1, "intermediate_size": 8, "max_position_embeddings": 512, "cross_attention_frequency": 1, "encoder_hidden_size": 8, } qformer_config = Blip2Config( vision_config=blip_vision_config, qformer_config=blip_qformer_config, num_query_tokens=8, tokenizer="hf-internal-testing/tiny-random-bert", ) qformer = Blip2QFormerModel(qformer_config) unet = UNet2DConditionModel( block_out_channels=(8, 16), norm_num_groups=8, layers_per_block=1, sample_size=16, in_channels=4, out_channels=4, down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), cross_attention_dim=8, ) tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") scheduler = PNDMScheduler( beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", set_alpha_to_one=False, skip_prk_steps=True, ) vae.eval() qformer.eval() text_encoder.eval() image_processor = BlipImageProcessor() components = { "text_encoder": text_encoder, "vae": vae, "qformer": qformer, "unet": unet, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def get_dummy_inputs(self, device, seed=0): np.random.seed(seed) reference_image = np.random.rand(32, 32, 3) * 255 reference_image = Image.fromarray(reference_image.astype("uint8")).convert("RGBA") if str(device).startswith("mps"): generator = torch.manual_seed(seed) else: generator = torch.Generator(device=device).manual_seed(seed) inputs = { "prompt": "swimming underwater", "generator": generator, "reference_image": reference_image, "source_subject_category": "dog", "target_subject_category": "dog", "height": 32, "width": 32, "guidance_scale": 7.5, "num_inference_steps": 2, "output_type": "np", } return inputs def test_blipdiffusion(self): device = "cpu" components = self.get_dummy_components() pipe = self.pipeline_class(**components) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) image = pipe(**self.get_dummy_inputs(device))[0] image_slice = image[0, -3:, -3:, 0] assert image.shape == (1, 16, 16, 4) expected_slice = np.array( [0.5329548, 0.8372512, 0.33269387, 0.82096875, 0.43657133, 0.3783, 0.5953028, 0.51934963, 0.42142007] ) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f" expected_slice {image_slice.flatten()}, but got {image_slice.flatten()}"