# coding=utf-8 # Copyright 2024 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class FlaxControlNetPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() def test_canny(self): controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-canny", from_pt=True, dtype=jnp.bfloat16 ) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16 ) params["controlnet"] = controlnet_params prompts = "bird" num_samples = jax.device_count() prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) canny_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ) processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) rng = jax.random.PRNGKey(0) rng = jax.random.split(rng, jax.device_count()) p_params = replicate(params) prompt_ids = shard(prompt_ids) processed_image = shard(processed_image) images = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=rng, num_inference_steps=50, jit=True, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) image_slice = images[0, 253:256, 253:256, -1] output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) expected_slice = jnp.array( [0.167969, 0.116699, 0.081543, 0.154297, 0.132812, 0.108887, 0.169922, 0.169922, 0.205078] ) print(f"output_slice: {output_slice}") assert jnp.abs(output_slice - expected_slice).max() < 1e-2 def test_pose(self): controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( "lllyasviel/sd-controlnet-openpose", from_pt=True, dtype=jnp.bfloat16 ) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, from_pt=True, dtype=jnp.bfloat16 ) params["controlnet"] = controlnet_params prompts = "Chef in the kitchen" num_samples = jax.device_count() prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) pose_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png" ) processed_image = pipe.prepare_image_inputs([pose_image] * num_samples) rng = jax.random.PRNGKey(0) rng = jax.random.split(rng, jax.device_count()) p_params = replicate(params) prompt_ids = shard(prompt_ids) processed_image = shard(processed_image) images = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=rng, num_inference_steps=50, jit=True, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) image_slice = images[0, 253:256, 253:256, -1] output_slice = jnp.asarray(jax.device_get(image_slice.flatten())) expected_slice = jnp.array( [[0.271484, 0.261719, 0.275391, 0.277344, 0.279297, 0.291016, 0.294922, 0.302734, 0.302734]] ) print(f"output_slice: {output_slice}") assert jnp.abs(output_slice - expected_slice).max() < 1e-2